

Украина, 40004, г.Сумы, ул.Горького, 58 Тел.: +38 0542 77 77 94, 68 69 15, 77 50 00

Факс: +38 0542 22 63 62 sales@frunze.com.ua

snpo.ua

Представительство в г.Киев:

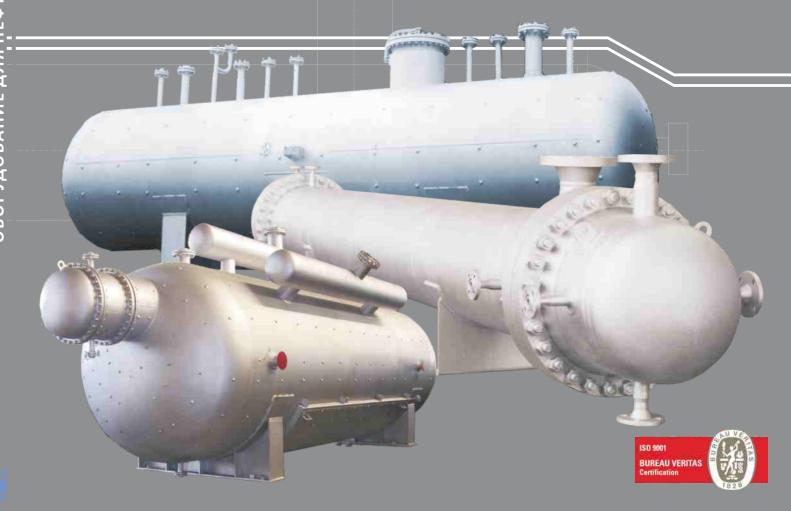
Тел./факс: +38 044 280 98 19, 280 98 28 frunze-kiev@ukr.net

Представительство в Российской Федерации (г.Москва):

Тел.: +7 495 745 88 28 Факс: +7 495 745 88 31 a.efremov@frunze.msk.ru

Филиал в Туркменистане (г.Ашгабат):

Тел./факс: +993 12 36 24 81 frunzeturkm@mail.ru frunzeturkm@rambler.ru


Филиал в Азербайджанской республике (г.Баку): Тел./факс: +994 12 447 45 68, 497 12 48 frunze@azeurotel.com

snpo.ua

Технический каталог

ОБОРУДОВАНИЕ ДЛЯ НЕФТЕГАЗОВОЙ ПРОМЫШЛЕННОСТИ

ПАО "Сумское НПО"

1 Содержание

Введение	2
Блоки пылеуловителей	3
Блоки сепараторов	5
Аппараты воздушного охлаждения	7
Кожухотрубчатые теплообменные аппараты с U-образными трубами типа ТУ	10
Кожухотрубчатые теплообменные аппараты с неподвижными трубными решетками типа ТН	12
Кожухотрубчатые теплообменные аппараты с плавающей головкой типа ТП	14
Абсорберы	16
Адсорберы	18
Емкости подземные горизонтальные дренажные	20
Емкости горизонтальные надземные	22
Резервуары	25
Блоки подогрева топливного газа	27
Подогреватели газа (электрические)	29
Технологические подогреватели	31
Блок компрессоров импульсного воздуха	33
Блоки системы маслоснабжения	36
Установка факельная	38
Установка редуцирования	40
Блок фильтра сепаратора	42
нефтегазовые сепараторы (буллиты)	44
Сертификаты и разрешения	46

В настоящем каталоге приведены данные по нефтегазовому оборудованию, выпускаемому ПАО "Сумское НПО", которое уже многие годы успешно эксплуатируется в регионах мира с различными климатическими условиями. Это один из многих каталогов продукции ПАО, в котором представлено только общестанционное технологическое оборудование. Как предприятие тяжелого машиностроения, оснащенное современным оборудованием для полного технологического цикла изготовления самых сложных изделий и установок – от выплавки любой марки стали, до комплексных испытаний в условиях максимально приближенным к эксплуатации, объединение имеет все возможности изготовить и поставить в самые короткие сроки любое оборудование для объектов нефтяной, газовой, нефтегазоперерабатывающей и энергетической промышленностей. Располагая большим научно-техническим и производственным потенциалом, предприятие может обеспечить строительство промышленных объектов «под ключ» с полнокомплектной поставкой, как технологического оборудования, так и оборудования инфраструктуры.

Главной целью создания этого каталога является максимальное сокращение сроков проектирования новых промышленных нефтегазопромысловых объектов, их строительства и ввода в эксплуатацию путем предоставления данных в объеме, достаточном для подбора необходимого оборудования и для начала проектных работ. Кроме поставок оборудования (единичного или полнокомплектного) объединение готово обеспечить его монтаж, пуско-наладку и сервисное обслуживание в течение всего срока эксплуатации.

По мере ознакомления с каталогом проектантами и потенциальными заказчиками он будет пополняться дополнительными данными, как по представленному оборудованию, так и по новому.

Основным преимуществом ПАО является многолетняя работа в нефтегазовой отрасли в тесных контактах с эксплуатационниками, наличие большого опыта по решениям любых технических проблем во внештатных ситуациях, наличие накопленной базы данных по отказам и сбоям в работе при изменениях технологических режимов объектов и опыта их решений в кратчайшие сроки без значительных материальных затрат.

Действующая в ПАО система менеджмента качества полностью соответствует международному стандарту ISO 9001-2008, что постоянно подтверждается регулярными аудиторскими проверками Bureau Veritas.

Кроме представленного в каталоге оборудования может быть поставлено любое другое оборудование под новые технологии или для модернизации существующих производств.

Специалисты ПАО готовы к сотрудничеству по созданию новейшего технологического оборудования с учетом дальней перспективы, с проведением необходимых исследований и всего комплекса испытаний и работ по доводке. Это сотрудничество не будет обязывать партнеров отказываться от тендеров, но позволит получать оборудование с более высокими эксплуатационными характеристиками в более короткие сроки.

НАЗНАЧЕНИЕ

Очистка природного газа от механических примесей и жидкости на компрессорных станциях магистральных газопроводов.

КОНСТРУКЦИЯ

В состав блока входят: пылеуловитель, запорная арматура и комплект контрольно-измерительных приборов и автоматики (КИПиА).

Пылеуловитель представляет собой вертикальный аппарат со штуцерами входа и выхода газа. В верхней части пылеуловителя расположены сепарационные элементы. Нижняя часть пылеуловителя является сборником механических примесей и жидкости. В корпусе пылеуловителя предусмотрены штуцер для дренажа жидкости и мехпримесей, подключения контрольно-измерительных приборов.

Блок пылеуловителя устанавливается на открытой площадке и может эксплуатироваться в районах с различными климатическими условиями.

Основной материал блока сепарационные элементы

углеродистая сталь,нержавеющая сталь.

По требованию заказчика блок может комплектоваться площадками обслуживания.

ПРИНЦИПЫ РАБОТЫ

Неочищенный газ поступает в пылеуловитель через входной патрубок A и распределяется между рядами центробежных мультициклонных элементов, в которых происходит отделение от него мелкодисперсных частиц жидкости и мехпримесей. Отсепарированные частицы под действием силы тяжести собираются в нижней части пылеуловителя и отводятся через дренажный штуцер Д. Очищенный газ выходит из пылеуловителя через штуцер Б.

НОРМАТИВНАЯ БАЗА

ТУ У 29.2-05747991-002:2011 «Блоки пылеуловителей. Технические условия»; ОСТ 26.260.18-2004 «Блоки технологические газовой и нефтяной промышленности. Общие технические условия» СТО Газпром 2-2.1-607-2011 «Блоки технологические. Общие технические условия».

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

Блок

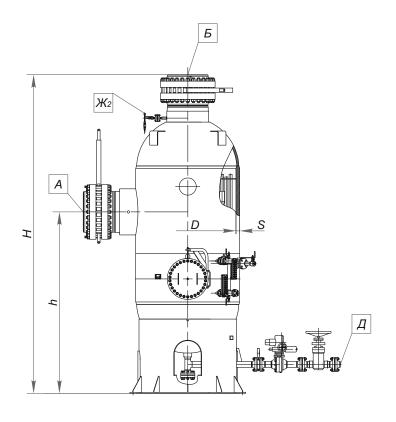
ЧЕНИЕ ПВЦ-1800-10,0/27,4-M-УХЛ1,

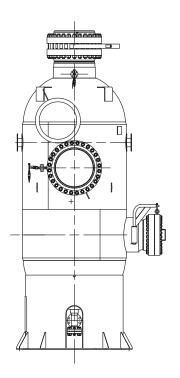
где:

ПВЦ - пылеуловитель вертикальный центробежный;

1800 - внутренний диаметр пылеуловителя, мм;

10,0 - давление расчетное, МПа;


27,4 - макс. производительность, млн. нм³/сутки; м - оборудован площадками обслуживания;


УХЛ1 - климатический район эксплуатации.

Обозначение	Диаметр аппарата внутренний D _{вн} , мм	Давление расчетное Р _р , МПа	Производи- тельность по газу, млн.нм ³ /сутки	Усл. диаметр патрубков (вх/вых), мм	Масса, кг
Блок ПВЦ-2600-5,6/18,0-УХЛ1	2600	5,6	18,0	1000	34750
Блок ПВЦ-2000-9,9/25,6-У1	2000	9,9	25,6	750	37800
Блок ПВЦ-1800-10,0/27,4-М-УХЛ1	1800	10,0	27,4	700	21415

Блоки пылеуловителей

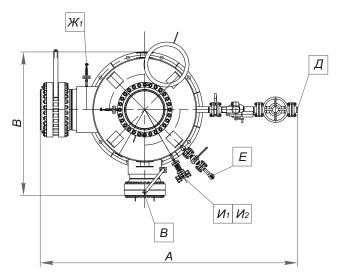


Таблица штуцеров

Обоз. Назначение	
Б Выход газа	
В Пюк-паз	
2	
Г Технологический	
Д Дренаж	
_F Датчик аварийного)
уровня уровня	
Ж _{1,2} Датчик перепада	
давления	
И1,2 Указатель уровня	

Наименование	Η,	h,	D,	A,	В,		Ду ц	туцеров,	MM	
Паименование	MM	MM	MM	MM	MM	Α	Б	В	Γ	Д
Блок ПВЦ-2600-5,6/18,0-УХЛ1	8020	5045	2600	5550	3370	1000	1000	500	100	100
Блок ПВЦ-2000-9,9/25,6-У1	7790	4670	2000	5610	3250	750	750	600	50	100
Блок ПВЦ-1800-10,0/27,4-М-УХЛ1	5945	3385	1800	4800	2765	700	700	500	100	_

Блоки сепараторов

НАЗНАЧЕНИЕ

Очистка природного (попутного нефтяного) газа от механических примесей и жидкости.

КОНСТРУКЦИЯ

В состав блока входят: сепаратор вертикального типа, шкаф арматурный с трубопроводами дренажа и слива жидкости, запорно-регулирующая арматура, комплект контрольно-измерительных приборов и автоматики (КИПиА) которые смонтированы на единой раме.

Сепаратор представляет собой вертикальный аппарат со штуцерами входа и выхода газа. В верхней части сепаратора расположен сепарационный элемент. Нижняя часть сепаратора является сборником механических примесей и жидкости. В корпусе сепаратора предусмотрены штуцера для дренажа и слива жидкости, подключения контрольно-измерительных приборов.

Блок сепаратора устанавливается на открытой площадке и может эксплуатироваться в районах с различными климатическими условиями.

Основной материал блока сепарационные элементы

углеродистая сталь,нержавеющая сталь.

ПРИНЦИПЫ РАБОТЫ

Неочищенный газ поступает через входной штуцер А в сепаратор и раскручивается между рядами центробежных мультициклонных элементов, в которых происходит отделение механических примесей и жидкости от газа. Очищенный газ выходит из сепаратора через штуцера Б. Отсепарированная жидкость поступает в нижнюю часть сепаратора и периодически по команде из САУ от датчиков уровня отводится по трубопроводу слива в станционную систему сбора жидкости. На трубопроводе слива жидкости установлены краны шаровые, запорно-регулирующая арматура с электроприводом. Дренажный трубопровод укомплектован кранами шаровыми с ручным приводом.

Блок является конструктивно законченным изделием с 100% заводской готовностью.

НОРМАТИВНАЯ БАЗА

ОСТ 26.260.18-2004 «Блоки технологические газовой и нефтяной промышленности. Общие технические условия»;

СТО Газпром 2-2.1-607-2011 «Блоки технологические. Общие технические условия».

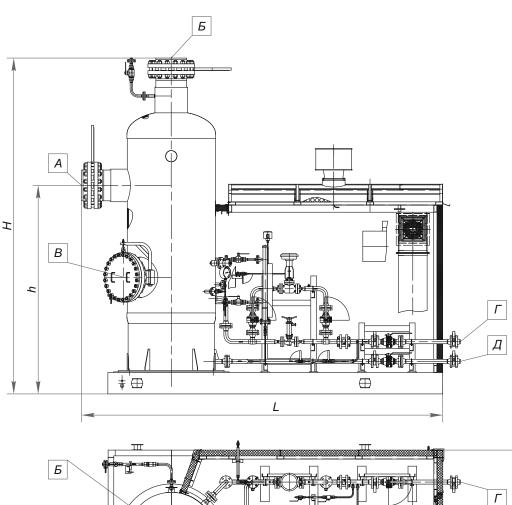
УСЛОВНОЕ ОБОЗНАЧЕНИЕ

Блок сепаратора СМЦ-1400-2,25/1,6-УХЛ1,

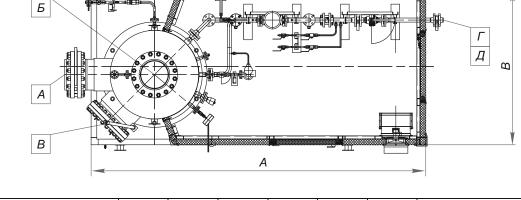
где:

СМЦ - сепаратор мультициклонный центробежный;

1400 - внутренний диаметр сепаратора, мм; 2,25 - производительность, млн. нм³/сутки;


1,6 - давление расчетное, МПа;

УХЛ1 - климатический район эксплуатации.


Обозначение	Диаметр аппарата внутренний Овн, мм	Расчетное давление Р _Р , МПа	Производительность по газу, млн. нм ³ /сутки	Условный диаметр патрубков (вх/вых), мм	Масса, кг
Блок сепаратора СМЦ-1400-2,25/1,6-УХЛ1	1400	1,6	2,25	500	5560
Блок сепаратора СМЦ-1400-1,46/1,9-ХЛ1	1400	1,9	1,46	400	6500
Блок сепаратора СМЦ-1400-1,8/2,5-ХЛ1	1400	2,5	1,8	400	6500
Блок сепаратора СМЦ-1200-2,25/4,0-УХЛ1	1200	4,0	2,25	300	5350
Блок сепаратора СМЦ-1200-2,25/4,6-У1	1200	4,6	2,25	300	6420
Блок сепаратора СМЦ-1400-7,5/6,5-УХЛ1	1400	6,5	7,5	500	14000
Блок сепаратора СМЦ-1200-2,21/7,5-УХЛ1	1200	7,5	2,21	400	9000
Блок сепаратора СМЦ-1400-5,75/7,6-УХЛ1	1400	7,6	5,75	400	12500

Блоки сепараторов

Таблица штуцеров							
Обоз. Назначение							
Α	Вход газа						
Б	Выход газа						
В	Люк-лаз						
Г Слив конденсата							
Д Дренаж							

Наимонования	L,	Н,	h,	D,	Α,	В,		Ду	штуцеров,	MM	
Наименование	MM	MM	MM	MM	MM	MM	Α	Б	В	Γ	Д
Блок сепаратора СМЦ-1400-2,25/1,6-УХЛ1	3475	3785	2705	1400	3340	1720	500	500	500	50	50
Блок сепаратора СМЦ-1400-1,46/1,9-ХЛ1	4585	4100	2620	1400	4450	2030	400	400	500	50	50
Блок сепаратора СМЦ-1400-1,8/2,5-ХЛ1	4710	4100	2620	1400	4450	2030	400	400	500	50	50
Блок сепаратора СМЦ-1200-2,25/4,0-УХЛ1	3410	3815	2705	1200	3140	1720	300	300	500	50	50
Блок сепаратора СМЦ-1200-2,25/4,6-У1	3410	3815	2705	1200	3140	1720	300	300	500	50	50
Блок сепаратора СМЦ-1400-7,5/6,5-УХЛ1	4925	5875	3185	1400	4450	2030	500	500	500	50	50
Блок сепаратора СМЦ-1200-2,21/7,5-УХЛ1	4670	4155	2825	1200	4450	2030	400	400	500	50	50
Блок сепаратора СМЦ-1400-5,75/7,6-УХЛ1	3960	5330	2870	1400	3340	1720	400	400	500	50	50

Аппараты воздушного охлаждения

НАЗНАЧЕНИЕ

Охлаждение природного газа и других газообразных и жидких сред.

КОНСТРУКЦИЯ

В зависимости от условий эксплуатации существуют аппараты воздушного охлаждения (далее - АВО) с камерами рециркуляции (КРЦ) и АВО без КРЦ.

АВО с КРЦ состоит из секции АВО (одной или нескольких), блока вентиляторного, блока рециркуляционного и защитных жалюзей.

АВО без КРЦ состоит из секции АВО (одной или нескольких), блока вентиляторного (без щитов). В зависимости от условий эксплуатации АВО без КРЦ может комплектоваться защитными жалюзями.

Секция АВО состоит из пучка биметаллических оребренных труб с наружным поперечным алюминиевым оребрением, соединяющих камеры. Секция АВО по количеству рядов труб может быть четырех-, шести- и восьмирядной, по количеству ходов – одно-, двух- и трехходовой.

Блок вентиляторный для ABO без камер рециркуляции состоит из диффузора (одного или нескольких) и вентилятора (одного или нескольких), расположенных на опорных металлоконструкциях.

Блок вентиляторный для ABO с камерами рециркуляции состоит из диффузоров и вентиляторов, расположенных в контейнере. на коротких стенках которого размещены регулируемые жалюзи через которые поступает охлаждающий воздух на вход вентиляторов.

КРЦ представляет собой каркас боковые стенки которого зашиты металлическими щитами, нижняя часть - открыта, а верхняя часть - закрыта регулируемыми жалюзями.

Диаметр рабочего колеса вентилятора может быть 0,8 и 2,7 м, мощность двигателя – 7,5; 13 и 15 КВт.

По требованию заказчика АВО может комплектоваться коллекторами входа и выхода продукта и площадками обслуживания.

Оборудование устанавливается на открытой площадке и может эксплуатироваться в районах с различными климатическими условиями.

Основной материал ABO материал несущей трубы

оребрение

материал диффузоров

материал рабочих колес вентиляторов

- углеродистая сталь,

- углеродистая или нержавеющая сталь,

- сплав алюминия,

- углеродистая сталь или композитный материал,

- композитный материал или сплав алюминия.

ПРИНЦИПЫ РАБОТЫ

Через патрубки входа газ подается в секции АВО в которой охлаждаются потоком воздуха от работающих вентиляторов. Поток воздуха регулируется отключением части вентиляторов или поворотом лопаток колес вентиляторов.

АВО с КРЦ позволяют регулировать температуру охлаждающего воздуха в холодный период года, чтобы исключить загидрачивание «сырого» газа в нижних рядах труб секций.

Повышение температуры охлаждающего воздуха достигается за счет перекрытия верхними жалюзями выхода горячего воздуха и ограничения поступления холодного воздуха на вход вентиляторов жалюзями вентиляторного блока. При этом часть горячего воздуха через неработающие вентиляторы поступает на вход работающим и, смешиваясь с холодным воздухом, повышает его температуру.

НОРМАТИВНАЯ БАЗА

ГОСТ Р 51364-99, ГОСТ Р 52630-2012, ОСТ 26-21-01-96, ПБ 03-584-03, ПБ 03-576-03.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

Аппарат воздушного охлаждения АВГ-Б-6,3-13-1-12-УХЛ1,

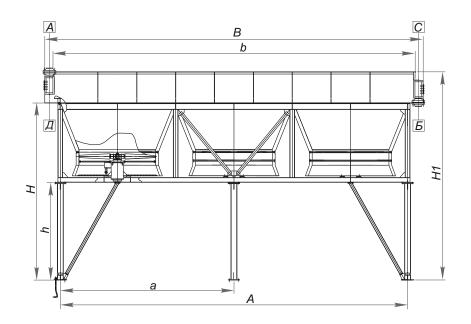
где:

АВГ - тип аппарата;

Б - без КРЦ (Б) или с КРЦ (К); 6,3 - давление расчетное, МПа;

13 - мощность электродвигателя, КВт;

количество секций;


12 - длина оребренной трубы, м; УХЛ1 - климатическое исполнение.

Аппараты воздушного охлаждения

Аппараты воздушного охлаждения типа АВГ-Б

Обозначение	Площадь	Давление	Количество	Длина	Количество	Диаметр	Количество	Macca,
	поверхности	расчетное,	секций АВО,	труб,	труб,	колеса	вентиляторов,	КГ
	теплообмена,	МПа	ШТ.	M	ШТ.	вентилятора,	ШТ.	
	м ²					М		
АВГ-Б-0,6-7,5-1-3-УХЛ1	867	0,6	1	3	180	0,8	2	3715
АВГ-Б-1,0-7,5-1-6-УХЛ1	1765	1,0	1	6	180	0,8	3	5500
АВГ-Б-0,6-7,5-2-4-У1	4600	0,6	2	4	360	0,8	4	9740
АВГ-Б-1,6-7,5-2-8-УХЛ1	4650	0,62	2	8	360	0,8	8	18000
АВГ-Б-10-7,5-2-10-УХЛ1	5954	10	2	10	360	0,8	10	23250
АВГ-Б-10-13-1-12-УХЛ1	7646	10	1	12	356	2,7	3	28100
АВГ-Б-10-13-2-12-УХЛ1	10280	10	2	12	522	2,7	6	42600
АВГ-Б-10-13-2-12-УХЛ1	13260	10	2	12	672	2,7	6	44650

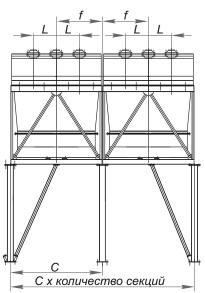
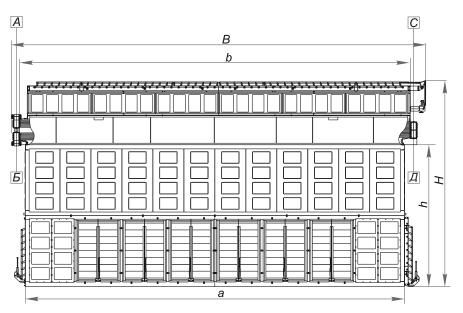


Таблица штуцеров

Обоз.	Назначение
Α	Вход продукта
Б	Выход продукта
С	Спуск воздуха
Д	Дренаж


Обозначение	a,	A,	b,	B,	C,	h,	H,	H1,	L,	f,		Ду шт	уцеров, м	М
Ооозначение	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	Α	Б	С	Д
АВГ-Б-0,6-7,5-1-3-УХЛ1	-	2925	3000	3980	1500	-	1615	2595	-	750	80	80	M16x1,5	M16x1,5
АВГ-Б-1,0-7,5-1-6-УХЛ1	ı	5595	6000	6475	1350	-	2510	3450	620	750	200	200	M16x1,5	M16x1,5
АВГ-Б-0,6-7,5-2-4-У1	-	3925	4000	5025	1480	-	1610	2595	680	750	50	50	M16x1,5	M16x1,5
АВГ-Б-1,6-7,5-2-8-УХЛ1	4000	8000	8000	9130	1500	-	3400	4590	-	750	200	200	M30x2	M30x2
АВГ-Б-10-7,5-2-10-УХЛ1	4900	9600	10000	10920	1500	-	3400	4950	-	750	150	150	M20x1,5	M20x1,5
АВГ-Б-10-13-1-12-УХЛ1	5750	11500	12000	12530	3000	2200	4200	5160	750	1500	150	150	M30x2	M30x2
АВГ-Б-10-13-2-12-УХЛ1	5750	11500	12000	12530	3000	2200	4200	5160	900	1500	150	150	M30x2	M30x2
АВГ-Б-10-13-2-12-УХЛ1	5750	11500	12000	12530	3000	2200	4200	5160	1000	1500	150	150	M30x2	M30x2

Аппараты воздушного охлаждения

Аппараты воздушного охлаждения типа АВГ-К

Обозначение	Площадь	Давление	Количество	Длина	Количество	Диаметр	Количество	Macca,
	поверхности	расчетное,	секций АВО,	труб,	труб,	колеса	вентиляторов,	КГ
	теплообмена,	МПа	ШТ.	M	ШТ.	вентилятора,	ШТ.	
	м ²					М		
АВГ-К-2,5-7,5-2-4,15-УХЛ1	2288	2,5	2	4,15	360	0,8	4	13150
АВГ-К-8-7,5-2-10-УХЛ1	5900	8	2	10	360	0,8	10	26400
АВГ-К-16-22-2-12,2-УХЛ1	5380	16	2	12,2	204	4,45	2	50000
АВГ-К-6,3-7,5-4-12-УХЛ1	11730	6,3	4	10	720	0,8	20	52800
АВГ-К-2,5-13-2-12-УХЛ1	13170	2,5	2	12	672	2,7	6	55400

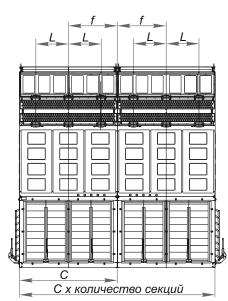


Таблица штуцеров

Обоз.	Назначение
Α	Вход продукта
Б	Выход продукта
С	Спуск воздуха
Д	Дренаж

Обозначение	a,	b,	В,	C,	h,	Η,	L,	f,	Ду штуцеров, мм			
Ооозначение	MM	MM	MM	MM	MM	MM	MM	MM	Α	Б	С	Д
АВГ-К-2,5-7,5-2-4,15-УХЛ1	4050	4150	5000	1500	2300	4285	-	750	150	150	M20x2	M20x2
АВГ-К-8-7,5-2-10-УХЛ1	9880	10000	10600	1500	2300	4200	-	750	150	150	M20x2	M20x2
АВГ-К-16-22-2-12,2-УХЛ1	12160	12200	13460	3000	4700	6600	600	1500	80	80	25	25
АВГ-К-6,3-7,5-4-12-УХЛ1	9880	10000	10600	1500	2300	4200	-	750	150	150	M30x2	M30x2
АВГ-К-2,5-13-2-12-УХЛ1	11590	12000	13300	3000	4300	6200	1000	1500	150	150	M30x2	M30x2

Кожухотрубчатые теплообменные аппараты с U-образными трубами типа ТУ

НАЗНАЧЕНИЕ

Теплообмен жидких и газообразных сред в технологических процессах нефтеперерабатывающей» нефтехимической, химической, нефтяной, газовой и других отраслях промышленности.

КОНСТРУКЦИЯ

Теплообменник типа ТУ представляет собой горизонтальный аппарат, в котором размещен трубный пучок. Теплообменные трубки закреплены в трубной доске (решетке), неподвижно закрепленной между фланцами корпуса теплообменника и распределительной камерой. При этом теплообменные трубы имеют возможность свободного температурного расширения в сторону днища корпуса. Трубы в решетке крепятся методом развальцовки либо методом обварки с последующей развальцовкой.

На корпусе имеются патрубки (штуцера), через которые теплоноситель (рабочая среда) проходит через межтрубное пространство. Рабочая среда (теплоноситель) через патрубки (штуцера) на распределительной камере проходит по трубам (трубному пространству).

Конструкция аппаратов может быть как односекционной, так и многосекционной.

НОРМАТИВНАЯ

СОУМП11171.120-217:2009;

БАЗА

ΓΟCT P52630-2012; ПБ03-576-03; TP TC 032/2013.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

1400 TY-0,6-1,6-1/25-6-T-2,

1400 - внутренний диаметр кожуха, мм;

ΤУ - теплообменник с U-образными трубами;

0,6 - условное давление в трубах, МПа; 1.6

- условное давление в кожухе. МПа:

- материальное исполнение:

1 - сталь 09Г2С;

2 - сталь 12Х18Н10Т;

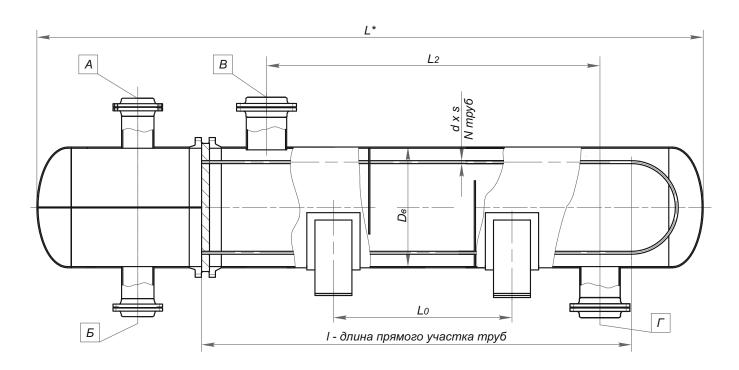
3 - трубное пространство - сталь 12Х18Н10Т, межтрубное пространство - сталь 09Г2С;

4 - трубное пространство - сталь 09Г2С, межтрубное пространство - сталь 12Х18Н10Т.

25 - наружный диаметр гладких теплообменных труб, мм;

- длина теплообменных труб, м;

Т - расположение теплообменных труб по вершинам равносторонних треугольников


(К - по вершинам квадратов);

2 - число ходов по трубному пространству.

Обозначение	Диаметр аппарата, внутренний Dв, мм	Давление расчетное в трубном/ межтрубном пространстве Ртр / Рмт, МПа	Температура расчетная в трубном/ межтрубном пространстве Ттр / Тмт, °С	Поверхность теплообмена, м ²	Размер теплообменных труб диаметр, толщина стенки, длина, мм количество труб	Масса, кг
400ТУ-0,6-0,6-1/20-4-Т-2	400	0,6 / 0,6	360 / 280	39	20x2 Lпр.уч.=4000 76 U-обр.труб	1265
600ТУ-14,4-2,0-2/25-3-Т-2	600	14,4 / 2,0	350 / 350	43,2	25х2,5 Lпр.уч.=3000 87 U-обр.труб	4661
600ТУ-8,0-1,6-1/25-4-Т-2	600	8,0 / 1,6	80 / 150	74,6	25х2,5 Lпр.уч.=4000 113 U-обр.труб	3347
400ТУ-1,6-1,6-1/25-3-Т-2	400	1,6 / 1,6	60 / 90	23	25х2,5 Lпр.уч.=3000 47 U-обр.труб	1055
400ТУ-0,6-0,6-1/25-3-Т-2	400	0,6 / 0,6	160 / 160	23	25х2,5 Lпр.уч.=3000 47 U-обр.труб	1077
400ТУ-0,6-0,6-1/20-4-Т-2	400	0,6 / 0,6	200 / 200	39	20х2 Lпр.уч.=4000 76 U-обр.труб	1360
400ТУ-6,3-6,3-1/20-5-Т-2	400	6,3 / 6,3	60 / 60	48.8	20х2 Lпр.уч.=5000 76 U-обр.труб	2170
1200ТУ-1,18-1,44-1/20-6-Т-2 сдвоенный	1200	1,18 / 1,44	310 / 225	1324,8	20x2 Lпр.уч.=6000 1656 U-обр.труб	32000
1200ТУ-10,0-10,0-1/20-9-Т-2	1200	10,0 / 10,0	74 / 60	980	20x2,5 Lпр.уч.=9000 828 U-обр.труб	41275
325ТУ-3,6-3,6-1/20-1,57-Т-2	325 наружный	10,0 / 10,0	150 / 40	6,7	20x2,5 Lпр.уч.=1576 35 U-обр.труб	925
325TY-3,6-3,6-1/20-1,56-T-2	325 наружный	3,6 / 3,6	50 / 50	6	20x2,5 Lпр.уч.=1560 31 U-обр.труб	620

Кожухотрубчатые теплообменные аппараты с U-образными трубами типа ТУ

Таблица штуцеров

Обоз.	Наименование				
Α	Вход в трубное				
Α	пространство				
Б	Выход из трубного				
Ь	пространства				
В	Вход в межтрубное				
Ь	пространство				
	Выход из межтрубного				
'	пространства				

Наименование	Dв,	I,	L,	Lo,	L2,	d x s,	N,		Ду штуц	еров, мм	
Паименование	MM	MM	MM	MM	MM	MM	ШТ	Α	Б	В	Γ
400ТУ-0,6-0,6-1/20-4-Т-2	400	4000	4960	2500	3500	20x2	76 U-обр.труб	50	50	50	50
600ТУ-14,4-2,0-2/25-3-Т-2	600	3000	4298	1500	2100	25x2,5	87 U-обр.труб	50	50	300	300
600ТУ-8,0-1,6-1/25-4-Т-2	600	4000	5370	2000	3360	25x2,5	113 U-обр.труб	150	150	150	150
400ТУ-1,6-1,6-1/25-3-Т-2	400	3000	3940	1500	2500	25x2,5	47 U-обр.труб	100	100	100	100
400ТУ-0,6-0,6-1/25-3-Т-2	400	3000	3940	1500	2500	25x2,5	47 U-обр.труб	100	100	100	100
400ТУ-0,6-0,6-1/20-4-Т-2	400	4000	4960	2500	3560	20x2	76 U-обр.труб	150	150	150	150
400ТУ-6,3-6,3-1/20-5-Т-2	400	5000	5952	3000	- тип BFU	20x2	76 U-обр.труб	100	100	100	100
1200ТУ-1,18-1,44-1/20-6-Т-2 сдвоенный	1200	6000	7930	3800	5300	20x2	1656 U-обр.труб	250	250	300	300
1200TУ-10,0-10,0-1/20-9-T-2	1200	9000	12320	5400	- тип BFU	20x2,5	828 U-обр.труб	150	150	200	150
325ТУ-3,6-3,6-1/20-1,57-Т-2	325 наружный	1576	2296	1015	1100	20x2,5	35 U обр.труб	50	50	50	50
325ТУ-3,6-3,6-1/20-1,56-Т-2	325 наружный	1560	2300	760	1100	20x2,5	31 U-обр.труб	200	200	100	100

Кожухотрубчатые теплообменные аппараты с неподвижными трубными решетками типа ТН

НАЗНАЧЕНИЕ

Теплообмен жидких и газообразных сред в технологических процессах химической, нефтехимической, нефтеперерабатывающей нефтяной, газовой и других отраслях промышленности.

КОНСТРУКЦИЯ

Теплообменник типа ТН представляет собой горизонтальный или вертикальный аппарат, в котором размещен трубный пучок. Теплообменные трубки закреплены в трубных досках (решетках), приваренных к корпусу теплообменника. Трубы в решетке крепятся методом развальцовки либо методом обварки с последующей развальцовкой.

На корпусе имеются патрубки (штуцера), через которые теплоноситель (рабочая среда) проходит через межтрубное пространство. Рабочая среда (теплоноситель) через патрубки (штуцера) на распределительной камере проходит по трубам (трубному пространству).

НОРМАТИВНАЯ

СОУМП11171.120-217:2009;

БАЗА

ГОСТ P52630-2012; ПБ03-576-03; ТР TC 032/2013.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ 1000 THΓ-1,6-2,5-1/20-6-4,

где:

1000 - внутренний диаметр кожуха, мм;

ТНГ - теплообменник с неподвижными решетками горизонтальный (ТНВ - вертикальный);

1,6 - условное давление в трубах, МПа;

2,3 - условное давление в кожухе, МПа;

материальное исполнение:

1 - сталь 09Г2С;

2 - сталь 12Х18Н10Т;

3 - трубное пространство - сталь 12Х18Н10Т, межтрубное пространство - сталь 09Г2С;

4 - трубное пространство - сталь 09Г2С, межтрубное пространство – сталь 12Х18Н10Т.

20 - наружный диаметр гладких теплообменных труб, мм;

6 - длина теплообменных труб, м;

4 - число ходов по трубному пространству.

Обозначение	Диаметр аппарата, внутренний	Давление расчетное в трубном/ межтрубном	Температура расчетная в трубном/межтрубном	Поверхность теплообмена, м ²	Размер теплообменных труб диаметр, толщина стенки,	Масса, кг
	Dв, мм	пространстве Ртр / Рмт, МПа	пространстве Ттр / Тмт, °С		длина, мм количество труб	
325ТНГ-0,6-2,2-1/25-3-2 сдвоенный	325	0,6 / 2,2	60 /100	15,08	25х2х3000 64 трубы	1450
800ТНГ-0,6-2,2-1/25-6-2	800	0,6 / 2,2	60 /100	180,39	25х2х6000 383 трубы	5410
800ТНГ-0,6-2,2-1/25-6-2	800	0,6 / 2,2	60 /100	180,39	25х2х6000 383 труб	5430
325THF-1,0-0,8-1/25-2-2	325	1,0 / 0,8	100 /160	9,7	25х2х2000 62 трубы	472
1200THF-4,6-4,6-1/20-9-2	1200	4,6 / 4,6	80 / 80	972	20х2х9000 1722 трубы	26970
325THF-11,0-11,0-1/20-1,5-1	325	11,0 / 11,0	70 / 70	8,6	20х2х1500 92 трубы	1250
325THF-0,9-0,8-2/20-2,5-1	325	0,9 / 0,8	75 /200	10,1	20х2х2500 78 труб	600
325THF-0,9-0,8-1/20-2,4-2	325	0,9 / 0,8	28 /158	11,2	20х2х2400 86 труб	630
450THΓ-0,8-0,85-2/20-6,97-2	450	0,8 / 0,85	75 /160	101	20х2х6970 233 трубы	2895
600ТНГ-9,9-9,9-1/20-4,7-1	600	9,9 / 9,9	60 / 80	105	20х2,5х4700 373 трубы	6850
600THΓ-8,0-0,6-1/20-6-1	600	8,0 / 0,6	50 /120	146	20х2,5х6000 401 труба	6460
800ТНГ-6,3-2,5-1/20-9-2	800	6,3 / 2,5	100 /100	400	20х2х9000 708 труб	10520
600THΓ-18,7-9,3-1/20-6,4-1	600	18,7 / 9,3	100 /100	150	20х2,5х6400 397 труб	11900
1000THΓ-10,0-3,6-1/20-9-1	1000	10,0 / 3,6	80 / 20	672,4	20х2х9000 1189 труб	19400
700THΓ-11,5-12,1-M1/25-4,34-1	700	11,5 / 12,1	50 / 80	116,5	25х2,5х4340 371 труба	11600
600THΓ-6,2-6,8-1/25-4,19-1	600	6,2 / 6,8	50 / 80	85,1	25х2,5х4190 271 труба	5400

Кожухотрубчатые теплообменные аппараты с неподвижными трубными решетками типа ТН

L1
L2
Таблица штуцеров
Обоз. Наименование
А вход в трубное
пространство
Б Выход из трубного
пространства
В ход в межтрубное
пространства
Выход из межтрубного
пространства
Г Выход из межтрубного
пространства

Рис. 1. Теплообменный аппарат типа ТНГ (одноходовой по трубам)

Рис. 2. Теплообменный аппарат типа ТНГ (многоходовой по трубам)

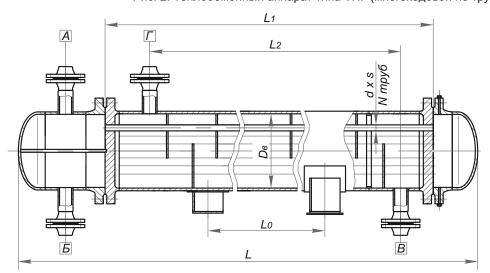


Таблица штуцеров

Обоз.	Наименование
Α	Вход в трубное
A	пространство
Б	Выход из трубного
Ь	пространства
В	Вход в межтрубное
ь	пространство
Г	Выход из межтрубного
'	пространства

Наиманараниа	Рис.	Dв,	L1,	L,	Lo,	L2,	d x s,	N,		Ду штуц	еров, мм	
Наименование	гис.	MM	MM	MM	MM	MM	MM	ШТ	Α	Б	В	Γ
325ТНГ-0,6-2,2-1/25-3-2 сдвоенный	2	325	3000	3640	1500	2550	25x2	64	50	50	80	80
800THΓ-0,6-2,2-1/25-6-2	2	800	6000	7020	3000	4690	25x2	383	150	150	150	150
800THΓ-0,6-2,2-1/25-6-2	2	800	6000	7020	3000	4690	25x2	383	150	150	150	200
325THΓ-1,0-0,8-1/25-2-2	1	325	2000	2620	800	1550	25x2	62	50	50	50	50
1200THΓ-4,6-4,6-1/20-9-2	1	1200	9000	10740	6000	7900	20x2	1722	300	300	400	400
325THΓ-11,0-11,0-1/20-1,5-1	1	325	1500	2542	600	946	20x2	92	100	100	100	100
325THΓ-0,9-0,8-2/20-2,5-1	2	325	2500	4150	1500	2198	20x2	78	80	80	40	40
325THΓ-0,9-0,8-1/20-2,4-2	2	325	2400	2745	1500	2098	20x2	86	80	80	40	40
450THΓ-0,8-0,85-2/20-6,97-2	1	450	6970	8725	4500	6424	20x2	233	200	200	80	80
600THΓ-9,9-9,9-1/20-4,7-1	1	600	4700	6312	2700	4035	20x2,5	373	300	300	80	80
600THΓ-8,0-0,6-1/20-6-1	1	600	6000	7610	3000	5335	20x2,5	401	300	300	80	80
800THΓ-6,3-2,5-1/20-9-2	1	800	9000	10370	6000	7830	20x2	708	140	140	250	250
600THΓ-18,7-9,3-1/20-6,4-1	1	600	6400	8675	3400	5240	20x2,5	397	150	150	200	200
1000THΓ-10,0-3,6-1/20-9-1	1	1000	9000	11680	5000	8022	20x2	1189	150	150	200	200
700THΓ-11,5-12,1-M1/25-4,34-1	1	700	4340	6347	2000	3420	25x2,5	371	400	400	50	50
600THΓ-6,2-6,8-1/25-4,19-1	1	600	4190	5641	2000	3540	25x2,5	271	400	400	50	50

Кожухотрубчатые теплообменные аппараты с плавающей головкой типа ТП

НАЗНАЧЕНИЕ

Теплообмен жидких и газообразных сред в технологических процессах нефтеперерабатывающей» нефтехимической, химической, нефтяной, газовой и других отраслях промышленности.

КОНСТРУКЦИЯ

Теплообменник типа ТП представляет собой горизонтальный или вертикальный аппарат, в котором размещен трубный пучок. Теплообменные трубы закреплены в трубных досках (решетках), одна из которых закреплена между фланцами корпуса теплообменника и распределительной камерой и является неподвижной, а вторая имеет возможность свободно перемещаться внутри корпуса под действием температурных расширений. Трубы в решетке крепятся методом развальцовки либо методом обварки с последующей развальцовкой.

На корпусе имеются патрубки (штуцера), через которые теплоноситель (рабочая среда) проходит через межтрубное пространство. Рабочая среда (теплоноситель) через патрубки (штуцера) на распределительной камере проходит по трубам (трубному пространству).

НОРМАТИВНАЯ БАЗА

СОУМП11171.120-217:2009; ГОСТ Р52630-2012; ПБ03-576-03; ТР ТС 032/2013.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

1000 ΤΠΓ-1,6-2,5-1/20-6-Τ-4,

где:

1000 - внутренний диаметр кожуха, мм;

ТПГ - теплообменник с плавающей головкой горизонтальный (ТПВ - вертикальный);

1,6 - условное давление в трубах, МПа;

2,5 - условное давление в кожухе, МПа;

- материальное исполнение:

1 - сталь 09Г2С;

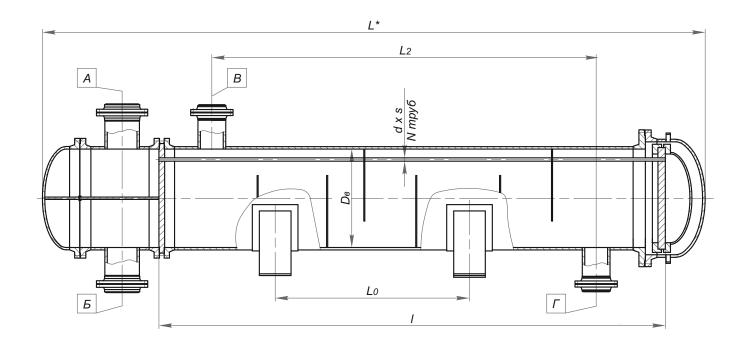
2 - сталь 12X18H10T;

3 - трубное пространство - сталь 12Х18Н10Т, межтрубное пространство - сталь 09Г2С;

4 - трубное пространство - сталь 09Г2С, межтрубное пространство – сталь 12Х18Н10Т.

20 - наружный диаметр гладких теплообменных труб, мм;

6 - длина теплообменных труб, м; Т - расположение теплообменных


 - расположение теплообменных труб по вершинам равносторонних треугольников (К- по вершинам квадратов);

4 - число ходов по трубному пространству.

Обозначение	Диаметр аппарата, внутренний Ов,мм	Давление расчетное в трубном/ межтрубном пространстве Ртр / Рмт, МПа	Температура расчетная в трубном/ межтрубном пространстве Ттр / Тмт, °С	Поверхность теплообмена, м ²	Размер теплообменных труб диаметр, толщина стенки, длина, мм количество труб	Масса, кг
800ТПГ-6,3-6,3-1/20-6-Т-2	800	6,3 / 6,3	350 /350	226	20x2x6000 645 труб	18680
325ТПГ-0,6-1,9-3/25-6-К-2	325	0,6 / 1,9	60 / 60	20,7	25x2x6000 44 трубы	1160
325ТПГ-0,6-1,9-3/25-6-К-2 сдвоенный	325	0,6 / 2,3	60 / 60	41,4	25x2x6000 88 труб	2340

Кожухотрубчатые теплообменные аппараты с плавающей головкой типа ТП

Таблица штуцеров

Обоз.	Наименование			
Α	Вход в трубное			
^	пространство			
Б	Выход из трубного			
ь	пространства			
В	Вход в межтрубное			
ь	пространство			
г	Выход из межтрубного			
_ '	пространства			

Наименование	Dв,	I,	L,	Lo,	L2,	d x s,	N,	Ду штуцеров, мм			
паименование	MM	MM	MM	MM	MM	MM	ШТ	Α	Б	В	Γ
800ТПГ-6,3-6,3-1/20-6-Т-2	800	6000	7960	3200	3954	20x2	645	300	300	300	300
325ТПГ-0,6-1,9-3/25-6-К-2	325	6000	6760	3000	5350	25x2	44	100	100	100	100
325ТПГ-0,6-1,9-3/25-6-К-2 сдвоенный	325	6000	6760	3000	5350	25x2	88	100	100	100	100

16 Абсорберы

НАЗНАЧЕНИЕ Осушка природного газа при помощи гликоля в установке жидкой осушки природного газа.

ПРИНЦИПЫ РАБОТЫ Принцип процесса абсорбции заключается в поглощении жидности из газовой смеси жидким абсорбентом.

аосороентом

КОНСТРУКЦИЯ Абсорберы представляют собой вертикальный сварной цилиндрический сосуд, установленный на опоре юбочного типа. Аппараты оснащены люками и технологическими штуцерами. Для проведения процесса

абсорбции аппараты оснащены массообменными элементами: колпачковыми тарелками. В целях снижения уноса абсорбента в верхней части абсорберов установлен сетчатый отбойник и блок

фильтрующих элементов.

Аппараты могут быть оснащены приборами контроля уровня абсорбента в кубовой части, давления,

перепада давления и температуры газа и жидкости.

Рабочая среда природный газ. Основной материал изделия сталь 09Г2С.

НОРМАТИВНАЯ

БАЗА

СОУ МПП71.120-217:2009,

ГОСТ P52630-2012, ПБ03-576-03, ТР TC 032/2013.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ Аб 2800-6,3

означение где:

Аб - абсорбер;

2800 - внутренний диаметр адсорбера, мм;

6,3 - расчетное давление, МПа.

Наименование	Диаметр аппарата внутренний, мм	Давление расчетное, МПа	Производительность по газу, млн. нм ³ /сутки	Условный диаметр штуцеров входа/ выхода газа, мм	Масса, кг
Аб 2000-8,25	2000	8,25	5	400/400	47200
Аб 2000-11,0	2000	11,0	5	400/400	70600
Аб 2800-5,5	2800	5,5	5,4	400/400	73530
Аб 2800-6,3	2800	6,3	10	400/400	80400

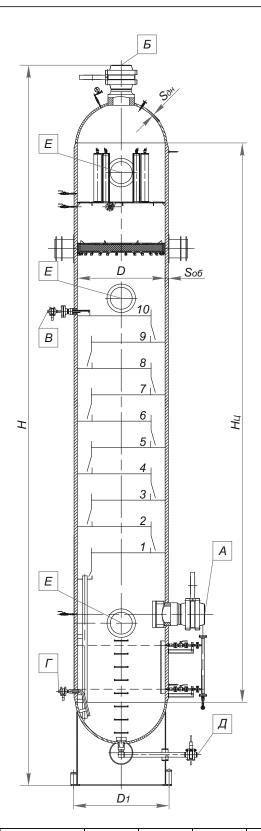


Таблица штуцеров

Обоз.	Назначение
Α	Вход газа
Б	Выход газа
В	Ввод орошения
Γ	Слив
Д	Дренаж
Е	Люк

Наименование Д, Н, Нц,				D1,	D1, Soб / Sдн, Ду штуцеров, мм						
Паименование	MM	MM	MM	MM	MM	Α	Б	В	Γ	Д	E
Аб 2000-8,25	2000	15505	11980	2350	55 / 36	400	400	50	50	100	500
Аб 2000-11,0	2000	16620	12945	2300	75 / 45	400	400	50	50	100	500
Аб 2800-5,5	2800	17480	13640	3140	55 / 26	400	400	100	100	50	500
Аб 2800-6,3	2800	17480	13440	3140	60 / 36	400	400	100	100	50	500

18 Адсорберы

НАЗНАЧЕНИЕ Осушка попутного нефтяного газа от остаточной влаги методом адсорбции.

ПРИНЦИПЫ РАБОТЫ Процесс адсорбции основан на способности поглощения молекулярной жидкости из газа твердым адсорбентом.

АВОТЫ адеоростто

КОНСТРУКЦИЯ Адсорберы представляют собой вертикальный стальной сварной цилиндрический аппарат,

установленный на опоре юбочного типа. Аппарат оснащен люками и технологическими штуцерами. Для проведения процесса адсорбции аппарат заполняется расходными материалами: цеолитом, уложенным

на фарфоровые шары.

Аппарат оснащен приборами контроля давления, перепада давления и температуры газа.

Рабочая среда природный газ. Основной материал изделия сталь 09Г2С.

НОРМАТИВНАЯ БАЗА СОУ МПП71.120-217:2009,

ГОСТ P52630-2012, ПБ03-576-03, ТР TC 032/2013.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ Ад 3000-16,0

503НАЧЕНИЕ где:

Ад - адсорбер;

3000 - внутренний диаметр адсорбера, мм;

16,0 - расчетное давление, МПа.

Наименование	Диаметр аппарата внутренний, мм	Давление расчетное, МПа	Температура расчетная, °С	Производительность по газу, млн. нм ³ /сутки	Условный диаметр патрубков (вх/вых), мм	Масса, кг
Ад 300-6,3	300	6,3	320	0,05	50/50	425
Ад 1400-14,4	1400	14,4	350	4,3	300/300	38260
Ад 2400-10,0	2400	10,0	350	3,5	200/200	67900
Ад 2800-7,5	2800	7,5	300	3,75	250/250	64356
Ад 3000-8,0	3000	8,0	350	13,8	300/300	83100

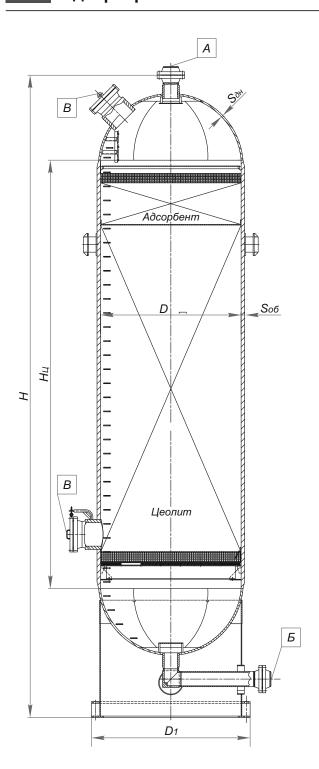


Таблица штуцеров

	. , , ,
Обоз.	Назначение
Α	Вход (выход) газа
Б	Выход (вход) газа
В	Люк

Наиманараниа	D,	Н,	Нц,	D1,	Sоб / Sдн,	Д	у штуцеров, мі	M
Наименование	MM	MM	MM	MM	MM	Α	Б	В
Ад 300-6,3	300	3520	3085	650	12 / 16	80	80	150
Ад 1400-14,4	1400	13925	10380	1680	80 / 50	300	300	450
Ад 2400-10,0	2400	14440	9150	2800	90 / 50	200	200	500
Ад 2800-7,5	2800	12970	7150	3140	90 / 45	250	250	450
Ад 3000-8,0	3000	13710	9140	3384	90 / 45	3000	300	500

Емкости подземные горизонтальные дренажные

НАЗНАЧЕНИЕ

Слив остатков нефтепродуктов, нефти, масла, конденсатов, в т.ч. в смеси с водой из технологических сетей (трубопроводов) и аппаратов на предприятиях нефтегазоперерабатывающей, нефтехимической, нефтяной и газовой отраслей промышленности. Могут использоваться для сбора и временного хранения газового конденсата.

КОНСТРУКЦИЯ

Дренажные емкости представляют собой цилиндрический горизонтальный сосуд, имеющий два люка, расположенными в верхней части аппарата. Один люк используется для проведения ремонтных и профилактических работ по обслуживанию оборудования, другой – для закачки и отбора жидкости из емкости. На него может устанавливаться полупогружной насос, который и осуществляет откачку жидкости из емкости. Так же емкости снабжены технологическими штуцерами и штуцерами для присоединения контрольно-измерительной аппаратуры.

Аппараты могут комплектоваться змеевиками для обогрева продукта. Расположение змеевика – внутри емкости. Теплоноситель – горячая вода или пар. Может применяться электрический обогрев емкости. При этом расположение обогревателя – только наружное.

Материальное исполнение емкостей

углеродистая сталь.

НОРМАТИВНАЯ БАЗА

СОУ МПП71.120-217:2009, ГОСТ Р52630-2012, ТР ТС 032/2013.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

ЕП-1600-6,3/1,6-Н

где:

Е - емкость;

П - подземная без подогревателя или

ППв - подземная с водяным подогревателем,

ППэ - подземная с электрическим подогревателем;

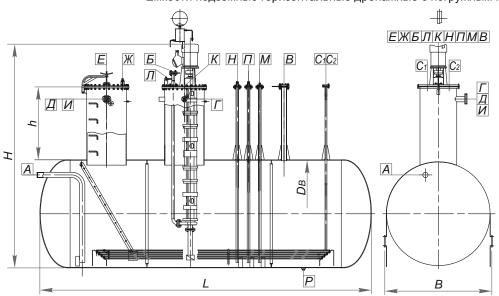
1600 - внутренний диаметр, мм; 6,3 - номинальный объем, м³; 1,6 - расчетное давление, МПа;

H - комплектуется полупогружным насосом XПE80-50-200-Д-55 (Q=50м³; H=50 м.вод.ст.);

без буквы - без насоса.

Емкости подземные горизонтальные дренажные с погружным насосом

Обозначение	Диаметр аппарата	Давление расчетное	Объем	Macca,
Ооозначение	внутренний D _{вн} , мм	P _p , МПа	номинальный, м ^з	КГ
ЕППв-1200-5/0,07-Н-У1	1200	0,07	5	3040
ЕП-2000-12,5/0,07-Н-УХЛ1	2000	0,07	12,5	4530
ЕППв-2200-32/0,7-Н-У1	2200	0,07	32	7650


Емкости подземные горизонтальные дренажные

Обозначение	Диаметр аппарата внутренний D _{вн} , мм	Давление расчетное Р _р , МПа	Объем номинальный, м ³	Масса, кг
ЕП-1600-10/3,0-УХЛ1	1600	3,0	10	6400
ЕПП-2000-16/0,07-У1	2000	0,07	16	4400
ЕППв-2000-16/1,6-УХЛ1	2000	1,6	16	5601
ЕП-2200-25/0,2-У1	2200	0,2	25	5950

Емкости подземные горизонтальные дренажные

Емкости подземные горизонтальные дренажные с погружным насосом

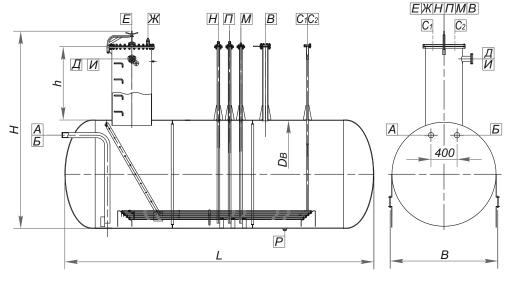


Таблица штуцеров Обоз. Назначение А Б Вход продукта Выход продукта В атмосферу В Γ Резервный Д Е Азот (пар) Люк-лаз Для манометра Ж И Воздушник Люк для насоса Л Для манометра Для датчика M температуры Н Для датчика уровня Для датчика П предельного уровня Для слива после Р гидроиспытаний C₁ Вход теплоносителя

Выход теплоносителя

Обозначение	D в, мм	Н, мм	L, мм	h, мм	В, мм
ЕППв-1200-5/0,07-Н	1200	3900	5320	1500	1295
ЕП-2000-12,5/0,07-Н	2000	4400	4346	1300	2295
ЕППв-2200-32/0,07-Н	2200	4450	8960	1350	2300

Емкости подземные горизонтальные дренажные

А	вход продукта
Б	Выход продукта
В	В атмосферу
Д	Азот (пар)
Е	Люк-лаз
Ж	Для манометра
И	Воздушник
М	Для датчика
IVI	температуры
Н	Для датчика уровня

Для датчика

предельного уровня Для слива после

гидроиспытаний

Вход теплоносителя Выход теплоносителя

Таблица штуцеров

Назначение

Обоз.

П

Р

C1

	Обозначение	Dв, мм	Н, мм	L, мм	h, мм	В, мм
ſ	ЕП-1600-10/3	1600	3640	5470	1500	1715
	ЕПП-2000-16/0,07	2000	4055	5655	1500	2100
	ЕППв-2000-16/1,6	2000	4055	5655	1500	2100
	EΠ-2200-25/0,2	2200	4255	7000	1500	2300

Емкости горизонтальные надземные

НАЗНАЧЕНИЕ

Для технологических установок химической и нефтегазоперерабатывающей промышленности, а так же в технологических установках для жидких и газообразных и углеводородных сред. Допускается применять в качестве отстойников и других самостоятельных емкостей, не входящих в состав технологических установок.

КОНСТРУКЦИЯ

Аппараты представляют собой цилиндрические сосуды с технологическими штуцерами и штуцерами для присоединения контрольно-измерительной аппаратуры. Так же они оборудованы люками для осмотра внутренней поверхности сосуда, его очистки и ремонта.

Аппараты могут комплектоваться змеевиками для обогрева продукта. Расположение змеевика – внутри емкости или снаружи. Теплоноситель – горячая вода или пар. Может применяться электрический обогрев емкости. При этом расположение обогревателя – только наружное.

Материальное исполнение емкостей

углеродистая сталь.

НОРМАТИВНАЯ БАЗА

СОУ МПП71.120-217:2009, ГОСТ Р52630-2012, ТР ТС 032/2013.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

ЕГПв-2400-25,0/0,6

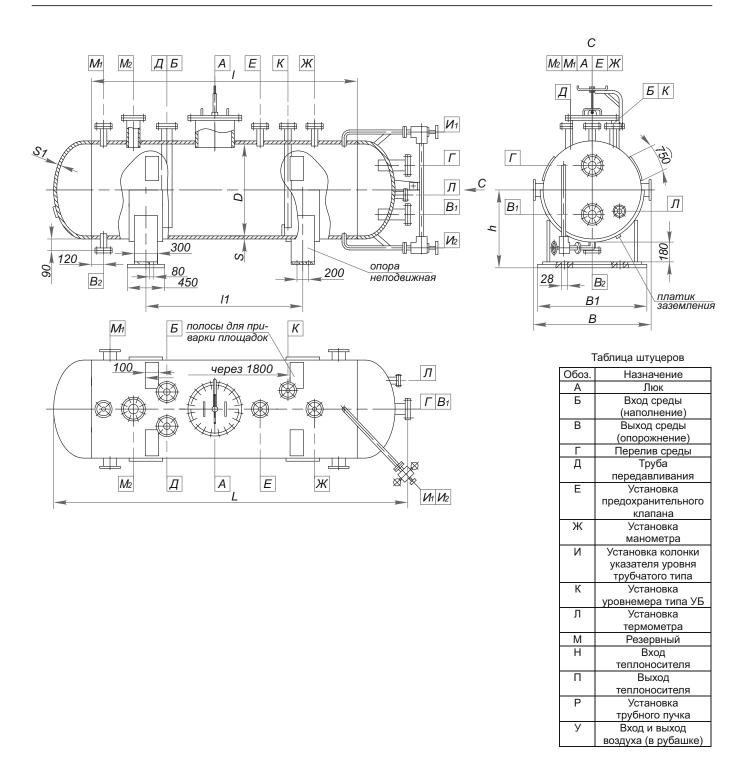
где:

Пв

Е - емкость;Г - тип емкости:

Г - горизонтальная, В - вертикальная; - тип подогревателя:

Пв - подогреватель водяной,
Пэ - подогреватель электрический,


без третьей буквы - без подогревателя;

2400 - внутренний диаметр, мм;
 25,0 - номинальный объем, м³;
 0,6 - расчетное давление, МПа.

Обозначение	Диаметр аппарата внутренний D _{вн} , мм	Давление расчетное Р _{р,} МПа	Объем номинальный, V,м ³	Масса, кг
EΓ-1600-6,3/1,6	1600	1,6	6,3	2605
ЕГ-1600-10,0/0,6	1600	0,6	10,0	2590
EΓ-2000-25,0/2,5	2000	2,5	25,0	7500
EΓ-2000-25,0/6,3	2000	6,3	25,0	24800
EΓ-2000-25,0/8,0	2000	8,0	25,0	28000
EΓ-2800-50,0/0,07	2800	налив	60,0	10300
EΓ-3000-50,0/0,07	3000	налив	50,0	11000
ЕГ-3000-100/1,6	3000	1,6	100,0	24100

Емкости горизонтальные надземные

Обозначение	D, мм	Ѕ, мм	S1, мм	L, мм	l, mm	I1, мм	В, мм	В1, мм
EΓ-1600-6,3/1,6	1600	12	14	3550	2500	1600	1800	1400
EΓ-1600-10,0/0,6	1600	8	10	5300	4400	3000	1790	1400
EΓ-2000-25,0/2,5	2000	14	16	8300	7000	5000	2230	1790
EΓ-2000-25,0/6,3	2000	40	36	10560	8500	5000	2120	1500
EΓ-2000-25,0/8,0	2000	50	45	10590	8500	5000	2100	1800
EΓ-2800-50,0/0,07	2800	10	12	10910	8750	7550	3005	2480
EΓ-3000-50,0/0,07	3000	12	14	7300	6600	4000	3480	2640
EΓ-3000-100/1,6	3000	18	20	15360	13000	11700	3480	2640

Резервуары

НАЗНАЧЕНИЕ

Хранение нефти и нефтепродуктов плотностью не более 1 т/м^3 , а так же воды.

КОНСТРУКЦИЯ

Наиболее распространенными емкостями для хранения нефти и нефтепродуктов, а также воды являются вертикальные стальные резервуары (PBC).

Типовые цилиндрические РВС могут иметь объем: 100, 200, 400, 500, 700, 1000, 2000, 5000, 10000, 20000 метров кубических.

Листы для изготовления стенки и днища резервуаров обычно имеют размеры 1500х6000 мм. Они обрабатываются с четырех сторон до размеров 1490х5990 мм для стенки резервуара и, согласно раскрою, для днища. Все заводские сварные соединения выполнены встык. Стенки и днища резервуара изготовляются в виде полотнищ, которые транспортируются к месту строительства свернутыми в рулоны.

Крыша резервуаров сборные, состоящие из плоских щитов, укладываемых с уклоном на центральное кольцо и стенку резервуара. Между собой щиты соединяются путем сборки внахлест.

В соответствии с «Правилами устройства вертикальных цилиндрических стальных резервуаров» для обслуживания оборудования, расположенного на крыше, резервуар снабжается площадками с ограждениями и наружной лестницей.

Лестница на крышу резервуара - многомаршевая, шахтная, используемая также в качестве каркаса для наворачивания полотнища стенки.

При хранении бензина или нефтепродуктов с большой упругостью паров, для снижения потерь от испарений в резервуаре устанавливается понтон. Конструкция понтона представляет собой днище из стали, по периметру которого приварен кольцевой борт. Уплотнение кольцевого пространства между крышей и стенкой корпуса осуществляется затвором.

Существует возможность заказа покупного понтона из полимерных и других материалов.

Назначение основного оборудования резервуара.

Патрубки приемо-раздаточные предназначенные для размещения приемо-раздаточного оборудования.

Люки-лазы первого пояса предназначены для доступа внутрь резервуара при ремонте и очистке от скопившейся грязи.

Световой люк предназначен для проветривания во время ремонта и зачистки.

Хлопушка с механизмом управления предотвращает утечку нефтепродуктов из резервуара в случае повреждения приемо-раздаточных патрубков.

Люк уровнемера служит для замера уровня продукта.

Существуют также патрубки для вентиляции, монтажа и других технологических нужд.

При необходимости резервуары могут комплектоваться подогревателями.

Для безопасной эксплуатации резервуаров они комплектуются следующим оборудованием:

- дыхательной аппаратурой;
- приборами контроля уровня;
- устройствами пожарной безопасности;
- устройствами молниезащиты.

К дыхательной аппаратуре относятся: огневые предохранители, препятствующие проникновению внутрь резервуара огня и искр. Дыхательные клапана устанавливаются на крыше резервуара для сокращения потерь от испарения при хранении легковоспламеняющихся продуктов. Предохранительные клапана устанавливаются на случай выхода из строя дыхательного клапана или нарушения технологического режима во избежание разрушения резервуара от повышенного давления или вакуума.

Резервуар снабжается системой молниезащиты. Молниеприемники устанавливаются на крыше резервуара.

Приборы контроля уровня должны обеспечивать оперативный контроль уровня продукта. Максимальный уровень продукта должен контролировать сигнализатор уровня (минимум два), передающий сигнал на отключение насосного оборудования.

В соответствии с требованием нормативных документов резервуары имеют средства пожаротушения. Средства пожаротушения подразделяются на средства наружного орошения, в случае сильного подъема температуры или возгорания продукта подающего воду посредством перфорированных коллекторов, и средства внутреннего пожаротушения.

25 Резервуары

КОНСТРУКЦИЯ

Средства внутреннего пожаротушения представляют собой коллектор, расположенный на определенной высоте от днища резервуара, из которого вода подается на генераторы пены расположенные в верхней части резервуара для покрытия пеной зеркала поверхности продукта внутри резервуара. Для обслуживания генераторов пен предусмотрены пожарные лестницы и площадки обслуживания, люки и патрубки.

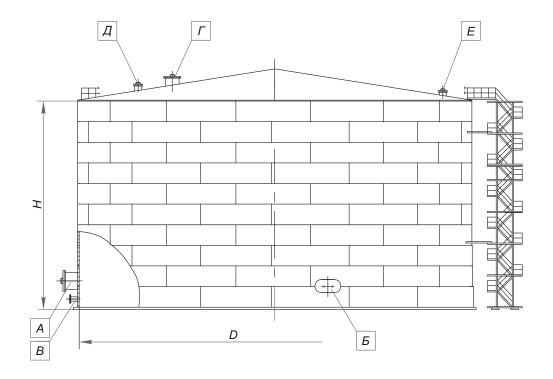
Резервуары снабжается системой молниезащиты. По устройству молниезащиты резервуары должны быть защищены от прямых ударов молнии, электростатической и электромагнитной индукции, заноса высоких потенциалов по трубопроводам.

По желанию заказчика резервуары могут комплектоваться дополнительными элементами КИПа:

Кроме указанных выше приборов контроля уровня, и приборов максимального контроля уровня, резервуары могут комплектоваться сигнализаторами нижнего уровня, приборами для измерения температуры среды в резервуаре, приборами для измерения температуры воздуха в резервуаре и другим контрольно-измерительным оборудованием.

Варианты исполнений:

- 1) В зависимости от назначения и климатических условий эксплуатации:
 - из углеродистой стали (для эксплуатации при температуре до -40°C);
 - из низколегированной стали (для эксплуатации при температуре до -65°C).
- 2) По конструкции, в зависимости от параметров продукта:
 - без понтона (РВС);
 - с понтоном (РВСП).


УСЛОВНОЕ ОБОЗНАЧЕНИЕ **PBC-5000**

где:

РВС - резервуар вертикальный стальной (РВСП – с понтоном);

5000 - номинальный объем, м³.

Таблица штуцеров

Обоз.	Назначение
Α	Люк-лаз I пояса
Б	Люк-лаз I пояса
	овальный
В	Патрубок приемо-
	сдаточный
Γ	Люк световой
Д	Люк монтажный
Е	Патрубок
	вентиляционный

Расположение люков и патрубков выполнаяется согласно Типовых проектов. Дополнительные штуцера для дыхательной аппаратуры, приборов контроля и измерения, устройств контроля безопасности и других технологических назначений выполняются по дополнительному требованию Заказчика.

Основные размеры типовых резервуаров

Соповные расмеры типовых ресорвуаров											
Наименование	Объем,	Н,	D,			Ду штуц	еров, мм			Macca,	
Паименование	м ³	MM	MM	Α	Б	В	Γ	Д	E	КГ	
РВС-200 для воды	200	5980	6630	500	-	150	500	500	200	15210	
РВС-200 для морской воды	200	5980	6630	500	-	150	500	500	200	15210	
PBC-300	300	7450	7580	500	-	-	500	1	80	16575	
PBC-500	500	5960	10430	500	600x900	-	500	500	100	24462	
PBC-700	700	8940	10430	500	600x900	150	500	500	-	24230	
PBC-1000	1000	11920	10430	500	600x900	200	500	500	-	34341	
PBC-2000	2000	11920	15180	500	600x900	200	500	500	-	66000	
PBC-5000	5000	14900	20520	500	600x900	200	500	500	-	142350	
РВСП-10000	10000	17880	28500	500	600x900	200	500	500	-	228444	
PBC-10000	10000	17880	28500	500	600x900	200	500	500	-	209269	
PBC-20000	20000	17880	39900	500	600x900	250	500	500	-	408114	

27

Блоки подогрева топливного газа

НАЗНАЧЕНИЕ

Непрямой нагрев природного (попутного нефтяного) газа.

КОНСТРУКЦИЯ

Блок состоит из расположенных на общей раме подогревателя газа и арматурного шкафа, включающего трубную обвязку с запорно-регулирующей арматурой и приборами КИП и А.

Подогреватель представляет собой горизонтальный двухкорпусной аппарат; верхний корпус – кожухотрубчатый U- образный теплообменник; нижний корпус – цилиндрическая обечайка с расположенной в ней жаровой трубой с газовыми горелками. На патрубке жаровой трубы установлена труба дымовая. Внутреннее пространство корпуса подогревателя заполнено промежуточным теплоносителем. Подогреватель и наружные трубопроводы – теплоизолированы.

Блок подогрева топливного газа устанавливается на открытой площадке и может эксплуатироваться в районах с различными климатическими условиями.

Основной материал блок

- углеродистая сталь,

трубного пучка

- нержавеющая сталь.

ПРИНЦИПЫ РАБОТЫ

Через штуцер «А» газ подается в контур теплообменника и трубную обвязку подачи топливного газа на газовые горелки.

Теплоноситель, нагретый в нижнем корпусе подогревателя, подогревает газ, циркулирующий в трубном пространстве теплообменника. Дымовые газы топочного пространства жаровой трубы выводятся за пределы блока через трубу дымовую. Подогретый газ через штуцер «Б» выходит из блока. Штуцера «Г» и «Д» предназначены для слива или дренажа теплоносителя из корпуса подогревателя.

НОРМАТИВНАЯ БАЗА

ОСТ 26.260.18-2004 «Блоки технологические газовой и нефтяной промышленности. Общие технические условия»;

ВРД 39-18-055-2002 «Типовые технические требования на проектирование КС, ДКС и КС ПХГ».

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

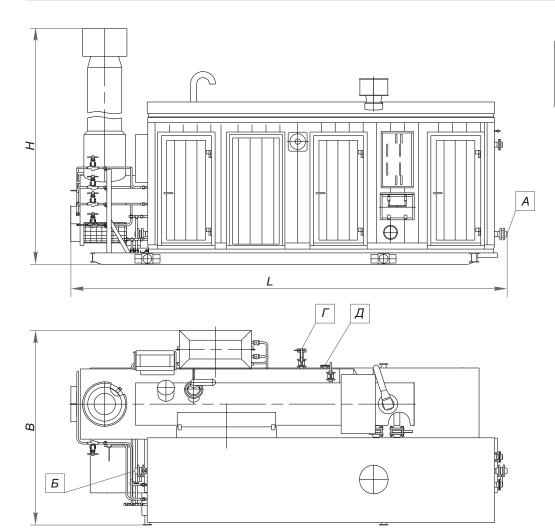
Блок подогрева топливного газа ПГО-20-670-10,0-XЛ1,

где:

ПГО - подогреватель газа огневого нагрева;

20 - производительность, тыс. $M^3/4$;

670 - тепловая мощность, кВт;


10,0 - давление расчетное, МПа;

ХЛ1 - климатический район эксплуатации.

Условное обозначение	Производительность по газу, м ³ /ч	Тепловая мощность, кВт	Давление расчетное Р _Р , МПа	Климатическое исполнение	Масса (без теплоносителя), кг
Блок подогрева топливного газа ПГО-10-320-8,0-У1	12500	320	8,0	У1	7800
Блок подогрева топливного газа ПГО-20-670-10,0-XЛ1	22834	670	10,0	ХЛ1	12800
Блок подогрева топливного газа ПГО-30-900-6,3-XЛ1	30000	900	6,3	ХЛ1	15300

Блоки подогрева топливного газа

	Таблица штуцеров							
Обоз.	Назначение							
Α	Вход газа							
Б	Выход газа							
Γ	Дренаж теплоносителя							
Д	Слив теплоносителя							

Обозначение	Диаметр труб, мм	Внутренний объём, м ³ трубчатка/корпус	Длина L, мм	Ширина В, мм	Высота Н, мм
Блок подогрева топливного газа ПГО-10-320-8,0-У1	25x3	0,02/3,2	7045	2100	10000
Блок подогрева топливного газа ПГО-20-670-10,0-ХЛ1	38x2	0,52/4,7	7760	2780	7765
Блок подогрева топливного газа ПГО-30-900-6,3-ХЛ1	25x3	0,33/4,7	7860	3500	7955

Подогреватели газа (электрические)

НАЗНАЧЕНИЕ Подогрев природного газа.

КОНСТРУКЦИЯ

Подогреватель представляет собой теплоизолирлованную емкость вертикального типа, заполненную промежуточным теплоносителем. В емкости расположен змеевик для нагрева газа; нижняя часть корпуса предназначена для установки блоков электронагревателей. Подогреватель газа оборудован штуцерами входа/выхода газа, заполнения и слива теплоносителя, установки контрольно-измерительных приборов.

Подогреватель газа может эксплуатироваться в районах с различными климатическими условиями.

Материал корпуса – углеродистая сталь, змеевик - углеродистая сталь (нержавающая сталь).

ПРИНЦИПЫ РАБОТЫ

Газ поступает через штуцер входа «А1» и проходя через змеевик подогревателя, нагревается от промежуточного тетеплоносителя. Нагрев теплоносителя осуществляется от блоков электронагревателей. Штуцер «В1» служит для заливки теплоносителя в корпус, а через штуцер «Г1» - его слив из подогревателя.

НОРМАТИВНАЯ БАЗА

ГОСТ Р 52630-2012 «Сосуды и аппараты стальные сварные. Общие технические условия»; ВРД 39-18-055-2002 «Типовые технические требования на проектирование КС, ДКС и КС ПХГ».

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

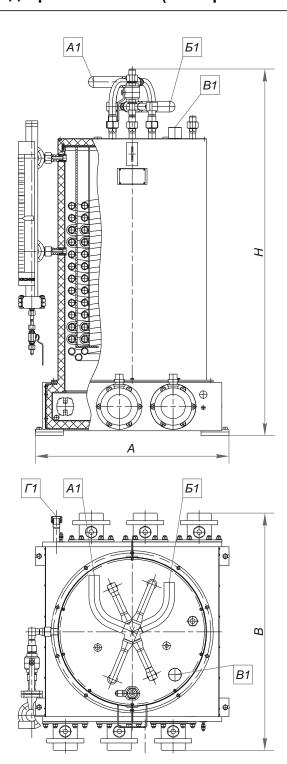
ПГЭ-1500-5.5-60-1.

где:

ПГЭ - подогреватель газа электрический;

1500 - производительность, кг/ч; 5,5 - давление расчетное, МПа; 60 - тепловая мощность, кВт;

- материальное исполнение змеевика:


1 - углеродистая сталь,

2 - 12X18H10T.

Условное обозначение	Производительность по газу, кг/час	Давление расчетное, МПа	Тепловая мощность, кВт	Условный диаметр патрубков (вх/вых газа), мм	Масса (без теплоносителя), кг
ПГЭ-3400-10,0-60-1	3400	10,0	60	50	725
ПГЭ-2250-7,5-40-1	2250	7,5	40	40	563
ПГЭ-1800-10,0-30-1	1800	10,0	30	25	313

Подогреватели газа (электрические)

	Таблица штуцеров							
Обоз.	Обоз. Назначение							
A1	Вход газа							
Б1	Выход газа							
B1	Заправка							
ы	теплоносителя							
Г1 Слив теплоносителя								

Условное обозначение	Объём, м ³	A	В, мм	Ц	Ду штуцеров, мм					
условное о оозначение	трубчатка/корпус	А, мм	D, MM	Н, мм	A1	Б1	B1	Γ1		
ПГЭ-3400-10,0-60-1	0,038/0,65	1254	1040	1985	50	50	50	25		
ПГЭ-2250-7,5-40-1	0,024/0,45	1254	1040	1380	40	40	50	15		
ПГЭ-1800-10,0-30-1	0,01/0,19	912	744	1188	25	25	25	15		

31

Технологические подогреватели

НАЗНАЧЕНИЕ

Нагрев нефти и природного газа в установках комплексной подготовки газа, переработки нефти.

КОНСТРУКЦИЯ

Технологический подогреватель представляет собой вертикальный аппарат, конструктивно состоящий из двух корпусов – радиантного и конвективного с расположенными внутри змеевиками и дымовой трубы с шиберным устройством. Корпус аппарата внутри футерован. В нижней части радиантного корпуса располагаются газовые горелки. Розжиг горелок производится электрической системой розжига, контроль пламени горелок – фотодатчиками.

Подогреватель оборудован площадками обслуживания.

Технологический подогреватель устанавливается на открытой площадке и может эксплуатироваться в районах с различными климатическими условиями.

Основной материал корпусов, переходника, дымовой трубы – углеродистая сталь.

Материал змеевиков – углеродистая сталь/нержавеющая сталь.

ПРИНЦИПЫ РАБОТЫ

Через штуцера входа «А», «Б», двумя параллельными потоками, нагреваемый продукт поступает в конвективный змеевик, где происходит его предварительный нагрев за счет температуры отходящих дымовых газов. Далее, поступает в радиантный змеевик, где нагревается до проектной температуры и выходит из технологического подогревателя через штуцера «В» и «Г».

НОРМАТИВНАЯ БАЗА

РД 3688-00220302-003-04 «Трубчатые нагревательные печи. Требования к проектированию, изготовлению и эксплуатации»;

ОСТ 26.260.758-2003 «Конструкции металлические. Общие технические требования».

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

ΤΠ-6,8/42563-8,0-2,

где:

ТП - технологический подогреватель;

6,8 - тепловая мощность, МВт; 42563 - производительность, кг/час;

8,0 - расчетное давление нагреваемого продукта, МПа;

- материальное исполнение змеевика:

1 – углеродистая сталь,

2 – 12X18H10T.

Условное обозначение	Тепловая мощность, МВт	Производительность, кг/час	Давление расчетное Рр, МПа	Масса (без теплоносителя), кг
ТП-1,0/2380-0,45-1	1,0	2380	0,45	18000
ТП-1,29/14820-7,0-2	1,29	14820	7,0	32000
ТП-2,5/8760-2,5-1	2,5	8760	2,5	69000
ТП-5,78/92600-1,0-2	5,78	92600	1,0	81000
ТП-6,8/42563-4,7-2	6,8	42563	4,7	82000
TΠ-10/55200-7,5-2	10,0	55200	7,5	105200

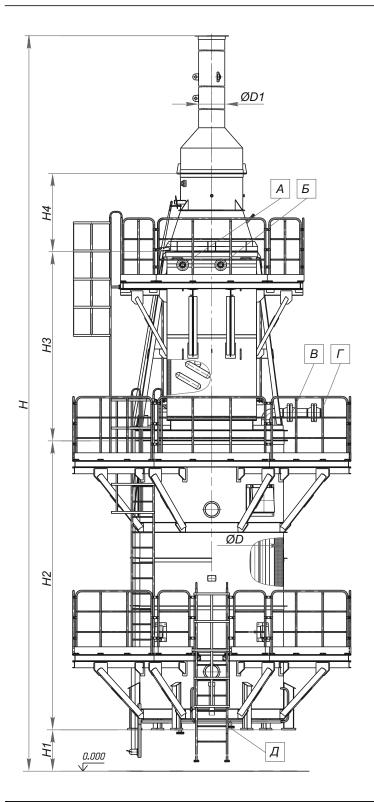


Таблица штуцеров

Обоз.	Назначение
Α	Вход продукта
Б	Вход продукта
В	Выход продукта
Γ	Выход продукта

Обозначение	D,	D1,	Н,	H1,	H2,	H3,	H4,		Ду ц	туцеров,	MM	
Ооозначение	MM	MM	MM	MM	MM	MM	MM	Α	Б	В	Γ	Д
ТП-1,0/2380-0,45-1	2100	820	20540	2000	6140	-	1290	80	-	80	-	50
ТП-1,29/14820-7,0-2	2730	1200	26045	2000	5380	3695	1500	100	100	150	150	50
ТП-2,5/8760-2,5-1	3590	822	31082	2000	12650	6060	1965	200	-	200	-	50
ТП-5,78/92600-1,0-2	3500	822	31200	2000	13430	5400	1965	150	150	150	150	50
ТП-6,8/42563-4,7-2	3500	822	31200	2000	13430	5400	1965	150	150	150	150	50
TΠ-10/55200-7,5-2	5000	1200	30600	1855	10800	4450	2460	125	125	150	150	80

Блок компрессоров импульсного воздуха

НАЗНАЧЕНИЕ

Применяется в составе компрессорных станций (КС) и предназначен для получения сжатого, осушенного и очищенного от механических примесей воздуха и наполнения им воздушных систем КС.

Блок рассчитан на нормальную работу при следующих условиях эксплуатации:

- 1) температура окружающего воздуха от 223К (минус 50°C) до 323К (50°C);
- 2) запыленность атмосферного воздуха, характерная для некоторых районов;
- 3) сейсмические колебания до 9 баллов по 12-бальной шкале.

КОНСТРУКЦИЯ И ПРИНЦИПЫ РАБОТЫ

В технологическом блоке в качестве источника получения сжатого воздуха используются два компрессорных агрегата Один из агрегатов находится в режиме работы, другой — резервный. Одновременно работа двух агрегатов не допускается. Работа агрегатов полностью автоматизирована и не требует постоянного присутствия обслуживающего персонала. Полученный сжатый воздух с давлением 25 МПа через краны шаровые поступает в блок осушки.

После блока осушки сухой и очищенный от механических примесей сжатый воздух поступает в блок аккумуляторов для хранения или раздачи. От блока аккумуляторов сжатый воздух высокого давления через концевой фильтр поступает в рампу раздаточную, где он дросселируется в регуляторе давления до давления Р =3,0...8,0 МПа и подается в линию раздачи с давлением 3,0...8,0 МПа. Одновременно редуцированный воздух может поступать и на редуктор для подачи в линию с давлением 0,4...1,0 МПа.

В линии раздачи 0,4...1,0 МПа предусмотрен отбор воздуха для замера влажности при помощи гигрометра.

В случае отказа редуктора давления предусмотрена возможность ручной регулировки давления $P=3,0...8,0\,M\Pi a.$

Блок имеет систему отопления, в которой используется внешний теплоноситель, а также систему вентиляции. Система обогрева обеспечивает подогрев воздуха, забираемого компрессором.

Вся установка блока представляет собой конструкцию, состоящую из транспортных блоков высокой заводской готовности, прошедших заводские испытания, окрашенных и подготовленных к дальнейшему транспортированию и хранению.

Состав блока компрессоров импульсного воздуха:

 1. Блок технологический в составе
 - 1 шт.;

 1.1 Агрегат компрессорный 6 ВШ 1,6-2,0/250
 - 2 шт.;

 1.2 Рампа раздаточная
 - 1 шт.;

 1.3 Блок осушки
 - 1 шт.;

 1.4 Электрооборудование
 - 1 компл.;

 2. Блок аккумуляторов
 - 1 шт.;

 3. Система управления
 - 1 компл.

НОРМАТИВНАЯ БАЗА

Блок компрессоров импульсного воздуха выполняется на современном техническом уровне в полном соответствии с Техническими требованиями Заказчика и отвечает действующим нормам и стандартам, в том числе и соответствует требованиям федеральных норм и правил в области промышленной безопасности «Правил безопасности в нефтяной и газовой промышленности». По надежности и технико-экономическим показателям блок компрессоров стоит в одном ряду с прогрессивным оборудованием на аналогичных объектах.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

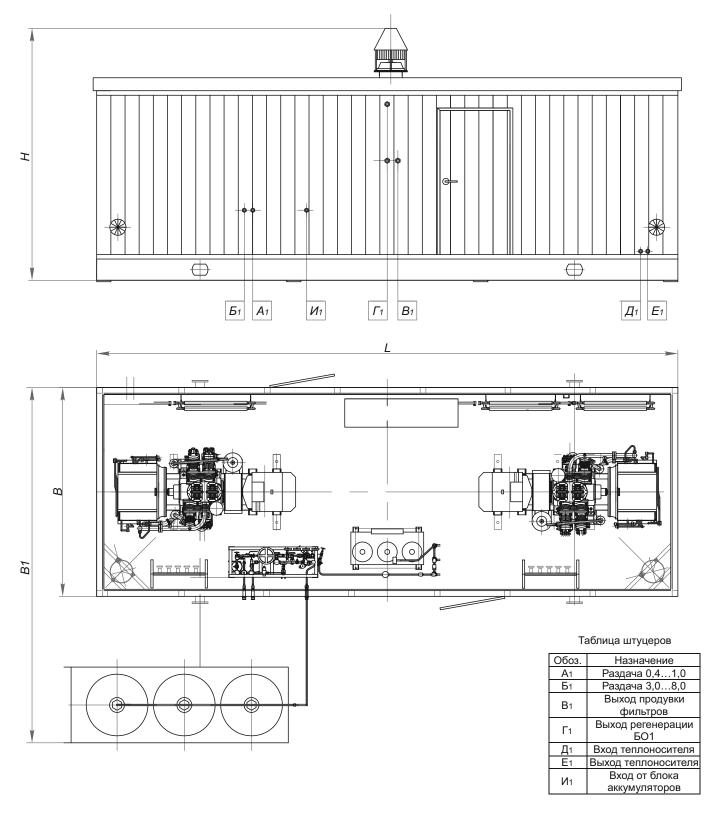
БКИВ-2,0/250,

где:

БКИВ - блок компрессоров импульсного воздуха;

2,0 - производительность, м³/мин., не менее;

250 - давление воздуха на выходе из аккумулятора, кгс/см².



34 Блок компрессоров импульсного воздуха

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОБОРУДОВАНИЯ:

Сжимаемый газ	атмосферный воздух
Производительность блока, м³/мин (м³/ч), не менее	2,0(120)
Количество компрессоров	2(1 – резервный)
Тип компрессора	6ВШ 1,6-2,0/250
Давление всасывания	атмосферное
Давление нагнетания, МПа	25
Температура всасываемого воздуха, °С	
- минимальная	5
- максимальная	50
Допустимая относительная влажность воздуха, %	100
Давление в линиях раздачи, МПа	
- Ркип	0,4÷1,0
- Римп	3,0÷8,0
Питание электрооборудования от сети со следующими параметрами:	
- напряжение, В	380/220
- частота, Гц	50
Тип электродвигателя	4AMY250S4-8
Номинальная мощность электродвигателя, кВт	75
Установка фильтрующего элемента от пыли на входе в систему	
охлаждения компрессора	имеется
· · ·	теплозвукоизолирующие
Обрамляющие элементы контейнера	стеновые панели
Система вытяжной вентиляции технологического блока	вентилятор ВКР-3,15
Количество вентиляторов, шт.	2
Установка осушки:	
а) продолжительность непрерывной работы одного адсорбера на	
поглощение влаги, час, не менее	24
б) продолжительность нагрева (при регенерации) одного адсорбера	
для достижения температуры воздуха 100°C на выходе, час, не более	4
в) продолжительность охлаждения (при регенерации) одного адсорбера	1
с применением продувки для достижения температуры воздуха 30°C	
на выходе, час, не более	4
г) продолжительность охлаждения (при регенерации) одного адсорбера	
без применения продувки, час, не более	8
д) состав и количество адсорбента в одном адсорбере:	l
верхний слой – силикагель ГОСТ3956-76, кг	5,0 ± 1,0
нижний слой – силикатель госторосто, кг	7,6 ± 0,5
Температура точки росы, воздуха после осушки, °С, не выше	
	минус 55
Прибор для замера влажности осушаемого воздуха	гигрометр ИВГ-1
Установка грузоподъемного устройства	таль червячная Q=0,5т
Наличие торцевых ворот для проведения ремонта компрессорных агрегатов	имеется
Габаритные размеры технологического блока (по контейнеру), мм:	2040
- длина	8210
- ширина	3150
- высота	2880
Масса блока компрессоров импульсного воздуха, кг, не более	15000
Показатели надежности (по компрессору):	
- средний ресурс до капитального ремонта, мотто-часов	40 000
- наработка на отказ, мотто-часов, не менее	4000
- технический ресурс с начала эксплуатации, мотто-часов	100 000
Масса наиболее тяжелого отгрузочного места, кг	12600
Суммарная установленная мощность потребителей эл. энергии, кВт,	160
не более	100

Наиманараниа	L,	В,	B1,	H,	Ду штуцеров, мм							
Наименование	MM	MM	MM	MM	A 1	Б1	B1	Γ1	Д1	E1	И1	
БКИВ-2,0/250	8210	2950	5020	3580	10	10	25	25	20	20	15	

Блоки системы маслоснабжения

НАЗНАЧЕНИЕ

Очистка (сепарация) масла из станционной системы маслоснабжения установки (компрессора) от механических примесей и воды, а также закачка масла из автоцистерны в емкость хранения масла.

КОНСТРУКЦИЯ

Блоки выполнены в блочно-контейнерном исполнении.

Контейнер представляет собой металлическое теплозвукоизолированное укрытие. Стены контейнера выполнены из 3-х слойных сендвич-панелей с заполнением тепло и звукоизоляционным материалом. Толщина панелей 80 мм. Кровля контейнера двухслойная и утепленная тепло-звукоизолирующими матами из базальтового волокна.

Контейнер разделен на два отсека: 1-й отсек – отсек маслоагрегатов для размещения основного оборудования и трубопроводной обвязки, 2-й отсек – для размещения системы пожаротушения.

Отсек маслоагрегатов, расположенный в 1-м отсеке, включает в себя три агрегата электронасосных Ш 15,50-4, два сепаратора СЦР321У-01 и трубопроводы с запорной арматурой. На выходных штуцерах блока установлены поворотные заглушки (обтюраторы).

Система пожаротушения, установленная во 2-м отсеке, включает в себя две батареи газового пожаротушения и трубопроводы подачи жидкой двуокиси углерода и выведенный в отсек маслоагрегатов трубопровод с насадками.

В торцовых стенках отсека предусмотрены: клапан перепускной для подачи воздуха, клапан обратный через который сбрасывается избыток воздуха вентиляции. Для входа в отсек предусмотрена теплоизолированная дверь.

Для входа в отсеки предусмотрены теплоизолированные двери.

Для обеспечения нормальных температурных условий работы приборов, оборудования и обслуживающего персонала, в период проведения ремонтных и регламентных работ, в блоке имеется система обогрева регистры которой установлены вертикально на стенках и перегородке в отсеках контейнера. В качестве теплоносителя используют горячую воду. Система отопления состоит из регистров, подводящих и отводящих трубопроводов, запорной арматуры, спускных клапанов.

Система приточно-вытяжной вентиляции состоит из принудительной вентиляции с радиальным вентилятором во взрывозащищенном исполнении и естественной за счет двух отверстий (ромашек) в щитах контейнера и дефлектора, установленного на крыше.

В блоке установлены щит автоматики и приборы КИП и А (с наружной стороны, рядом со входом в отсек маслоагрегатов) предназначенные для автоматического регулирования и контроля параметров блока.

Для строповки блока при погрузочно-разгрузочных работах и при установке на монтаже в раме блока предусмотрены специальные строповочные устройства.

Для выполнения ремонтных работ в блоке предусмотрен кран мостовой ручной грузоподъемностью Q=1 т.

Рабочая среда блоков масло турбинное ТП-22С.

Основной материал блока углеродистая сталь.

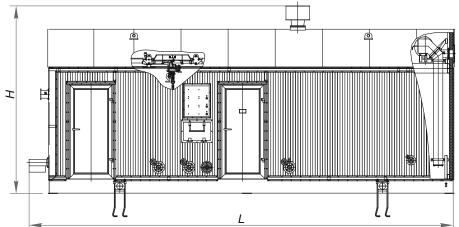
ПРИНЦИПЫ РАБОТЫ

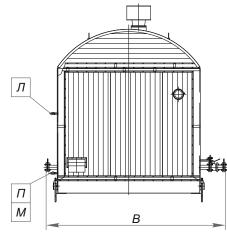
Масло из автоцистерны (штуцер "A") с помощью насоса подается в блок и далее направляется в емкость чистого масла (штуцер "Б") на хранение и (или) в бак агрегатов, откуда оно поступает для обеспечения смазки компрессорных агрегатов.

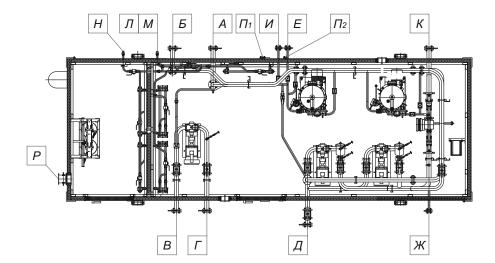
Отработанное загрязненное масло из емкости отработанного масла (штуцер "E") поступает на сепараторы, где происходит его очистка, далее смешиваясь с чистым маслом, которое поступает из емкости чистого масла (штуцер "И") направляется в баки агрегатов (штуцер "К").

Сливающееся в дренаж масло и конденсат (штуцера "П1,2"), собирается в дренажной емкости, откуда масло откачивается насосом (штуцер "В") в автоцистерну и далее отправляется на очистку и регенерацию.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ


БСМ - блок системы маслоснабжения;


IAЧЕНИЕ **БСМ-Н** - блок системы маслоснабжения с наддувом воздуха в отсек системы пожаротушения.


	Обозначение	Подача масла, м ³ /ч	Давление нагнетания, МПа (кгс/см²)	Масса, кг
	БСМ-Н	15,5	0,4 (4)	12000
Г	БСМ	15,5	0,4 (4)	11600

Блоки системы маслоснабжения

Таблица штуцеров

Обоз.	Назначение
Α	Вход к насосу откачки
A	масла из автоцистерны
Б	Выход в емкость
	чистого масла
	Вход к насосу откачки
В	масла из дренажного
	бака
Γ	Вход в автоцистерну
Д	Вход из бака
А	чистого масла
E	Вход из емкости
	отработанного масла
ж	Выход в емкость
//\	чистого масла
и	Вход из емкости
VI	чистого масла
К	Выход масла
'\	в баки агрегатов
Л	Вход теплоносителя
"	в блок
М	Выход теплоносителя
IVI	из блока
Н	Слив теплоносителя
П1,2	Слив масла в дренаж
Р	Подача воздуха в блок
·	

Наименование	L,	В,	Н,						Д	у штуц	еров, м	M					
паименование	MM	MM	MM	Α	Б	В	Γ	Д	Е	Ж	И	К	Л	М	Н	П1,2	Р
БСМ-Н	9006	3990	3807	80	80	80	80	80	32	32	32	80	25	25	25	50	160
БСМ	8612	3480	3770	80	80	80	80	80	32	32	32	80	20	20	-	40	-

Установка факельная

НАЗНАЧЕНИЕ

Сжигание горючих газов и паров при аварийных, постоянных и периодических сбросах, выходе оборудования из строя, плановом ремонте.

КОНСТРУКЦИЯ

В состав факельной установки входят: факельный ствол, оголовок, система розжига факела, площадки обслуживания.

Факельная установка представляет собой вертикальный цилиндрический ствол, с установленным в верхней части газовым затвором, дежурными горелками со встроенным запальным электродом. Для осмотра внутренней полости факельного ствола предусмотрен смотровой люк. Зажигание дежурных горелок осуществляется от электронного блока управления, контроль пламени горелок контролируется датчиком пламени. Для работы дежурных горелок предусмотрены трубопроводы подачи топливного газа.

Факельная установка может устанавливаться на открытой площадке и может эксплуатироваться в районах с различными климатическими условиями.

Основной материал факельной установки

- углеродистая сталь,

материал оголовка

- жаропрочная сталь.

ПРИНЦИПЫ РАБОТЫ

Газ через входной штуцер А поступает в факельный ствол, проходит через газовый затвор, далее газ поступает в оголовок факела, где происходит зажигание от дежурных горелок.

НОРМАТИВНАЯ БАЗА

ГОСТ Р 52630-2012 "Сосуды и аппараты стальные сварные. Общие технические условия";

"Руководство по безопасности факельных систем», утверждено Приказом Федеральной службы по экологическому, технологическому и атомному надзору N 779 от 26 декабря 2012 г. А.В. Ферапонтовым.

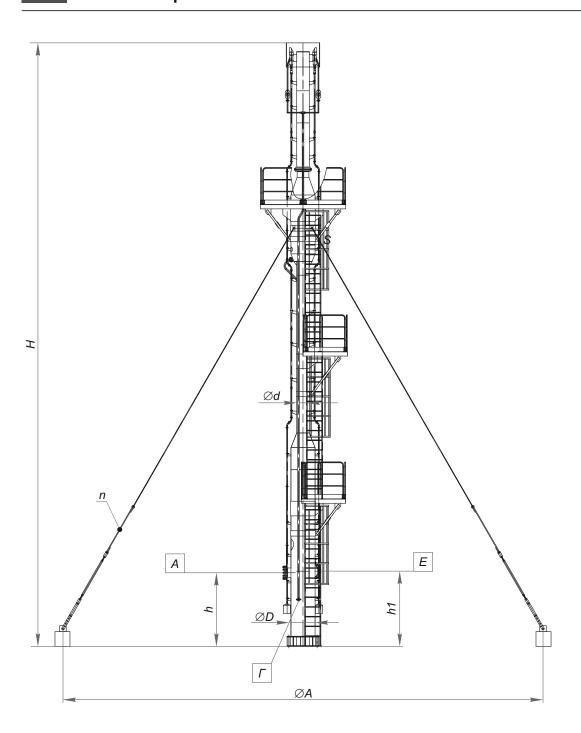
УСЛОВНОЕ ОБОЗНАЧЕНИЕ

ФУ-21-300/20.5-Э-УХЛ1

где:

ФУ - установка факельная;

21 - пропускная способность по газу, тыс. нм³/час;


300 - условный диаметр входа газа, мм; 20,5 - высота установки факельной, м

Э - электрический розжиг;

УХЛ1 - климатическое исполнение по ГОСТ15180-79.

Обозначение	Производительность по газу, нм³/час	Условный диаметр патрубка входа, мм	Тип розжига	Масса, кг
ФУ-10-700-ХЛ1	10000	700	Электрический	19000
ФУ-21-300-Э-УХЛ1	21000	300	Электрический	7550

Таблица	штуцеров

14	олица штуцоров
Обоз.	Назначение
Α	Вход газа
Γ	Вход газа на горелки
Е	Люк-лаз

Наимонование	Н,	h,	h1,	Α,	D,	d,	n,	Ду	штуцеров,	MM
Наименование	MM	MM	MM	MM	MM	MM	ШТ	Α	Γ	E
ФУ-10-700-ХЛ1	30045	5525	21325	30000	1220	820	3	700	50	400
ФУ-21-300-Э-УХЛ1	20500	2500	2555	17000	820	426	3	300	50	400

Установка редуцирования

НАЗНАЧЕНИЕ

Для редуцирования и поддержания заданного давления топливного, пускового и газа на собственные нужды компрессорной станции.

КОНСТРУКЦИЯ

Установка редуцирования включает в себя две линии редуцирования газа (основная и резервная) с запорно-регулирующей арматурой, контрольно-измерительные приборы, предохранительные клапаны на каждой линии редуцирования, трубопроводы сброса газа с предохранительных клапанов, установленных на единой раме.

Установка может эксплуатироваться в районах с различными климатическими условиями.

Основной материал установки

- углеродистая сталь.

ПРИНЦИПЫ РАБОТЫ

Газ через входной штуцер А поступает в линию редуцирования установки, редуцируется до заданного давления проходя через регулятор давления прямого действия «после себя» и через штуцер Б выводится из блока. На линиях редуцирования установлена пневмоприводная арматура для переключения между линиями «в работе» и «в резерве». Для защиты от превышения давления на каждой линии редуцирования установлены предохранительные клапаны с трубопроводами для сброса газа.

Установка редуцирования является конструктивно законченным изделием с 100% заводской готовностью.

НОРМАТИВНАЯ БАЗА

OCT 26.260.18-2004 «Блоки технологические газовой и нефтяной промышленности. Общие технические условия»;

СТО Газпром 2-2.1-607-2011 «Блоки Технологические. Общие технические условия»;

ВРД 39-1.8-055-2002 «Типовые технические требования на проектирование КС, ДКС и КС ПХГ».

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

УРГ-4.55-8.0/4.0-УХЛ1

ЕНИЕ где:

УРГ - установка редуцирования газа; 4,55 - производительность, тыс. кг/ч; 8,0 - давление газа на входе, МПа; 4,0 - давление газа на выходе, МПа;

УХЛ1 - климатическое исполнение по ГОСТ15180-79.

Обозначение	Производительность,	Давление на входе,	Давление на выходе,	Macca,
Ооозначение	кг/ч	МПа	МПа	КГ
УРГ-4,55-8,0/4,0-УХЛ1	4550	8,0	4,0	2200
УРГ-6,6-8,4/4,0-У1	6600	8,4	4,0	2250

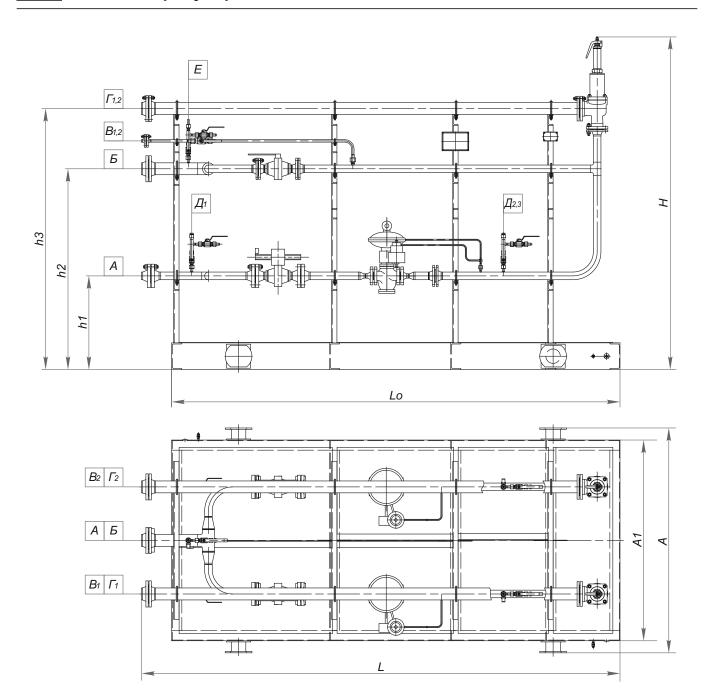


Таблица штуцеров

	• • •
Обоз.	Назначение
Α	Вход газа
Б	Выход газа
B _{1,2}	Сброс газа на свечу
	Сброс
Γ _{1,2}	с предохранительного
	клапана
Д ₁₋₃	Для манометра
E	Для датчика давления
	·

Наиманопораниа	Lo,	L,	A,	A1,	H,	h1,	h2,	h3,	Ду штуце	еров, мм
Наименование	MM	MM	MM	MM	MM	MM	MM	MM	Α	Б
УРГ-4,55-8,0/4,0-УХЛ1	3250	4260	1700	1500	2690	700	1405	2080	80	100
УРГ-6,6-8,4/4,0-У1	3250	4250	1700	1500	2725	700	1410	1995	80	100

Блок фильтра сепаратора

НАЗНАЧЕНИЕ

Отделение капельной жидкости и механических примесей из природного газа.

КОНСТРУКЦИЯ

Блок фильтра-сепаратора состоит из фильтра-сепаратора со сборником конденсата, арматурного блока, площадок обслуживания, КИП и А. Фильтр-сепаратор представляет собой горизонтальный цилиндрический сварной сосуд, установленный на седловых опорах. Внутри корпуса фильтра-сепаратора установлены фильтрующие элементы и секция предварительной сепарации. Сборник конденсата представляет собой отдельный горизонтальный сосуд, расположенный в нижней части фильтра-сепаратора и предназначен для сбора отсепарированной жидкости. Фильтр сепаратор снабжен технологическими штуцерами, люками для обслуживания и штуцерами для подключения приборов КИП. В случае технологической необходимости фильтр сепаратор оснащается скобовым затвором позволяющим ускорить замену фильтрующих элементов.

Арматурный блок может располагаться как на общей раме с фильтром сепаратором, так и быть выносным (отдельно стоящим). Он состоит из технологических трубопроводов с запорной и регулирующей арматурой. В нем также установлены приборы, средства автоматики и контроля процесса фильтрации и отвода конденсата.

Для проведения осмотра и обслуживания наружных и внутренних устройств, блок фильтра сепаратора оснащается площадками обслуживания.

Рабочая среда природный газ. Основной материал изделия сталь 09Г2С.

ПРИНЦИПЫ РАБОТЫ

Очищаемый газ подается на вход через штуцер «А». С начала газ очищается в секции предварительной сепарации от крупных капель жидкости и механических частиц, а затем проходя через фильтрующие элементы газ очищается от мехпримесей и капельной жидкости размером свыше 5 мкм. Уловленная в фильтре-сепараторе жидкость с мехпримесями сливается в сборник конденсата, из которого отводится через штуцеры «Г». Чистый газ отводится через штуцер «Б».

НОРМАТИВНАЯ БАЗА СОУ МПП71.120-217:2009, ГОСТ Р52630-2012, ОСТ 26.260.18-2004; ТР ТС 032/2013.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

ФС 2000-16,0-БК (К)

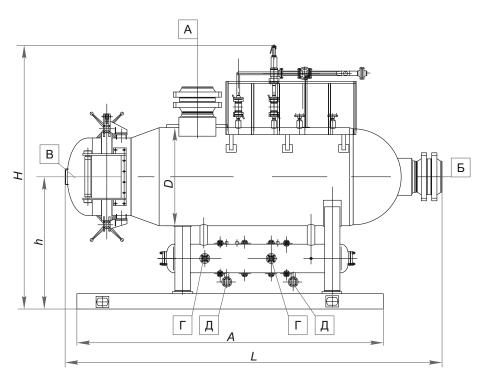
ОБОЗНАЧЕНИЕ

где:

ФС - фильтр-сепаратор;

2000 - внутренний диаметр фильтра-сеператора, мм;

16,0 - расчетное давление, МПа;


Б - блочное исполнение;

БК - блочное исполнение с выносным арматурным блоком в контейнере.

Обозначение	Диаметр аппарата внутренний, мм	Давление расчетное, МПа	Производительность по газу, млн. нм³/сут	Условный диаметр патрубков вх/вых, мм	Масса, кг
ФС 1800-8,5-Б	1800	8,25	24,0	600	34230
ФС 1000-16,0-БК ХЛ1	1000	16,0	0,72	100	29155
ФС 1400-10,0-Б У1	1400	10,0	5,0	400	14148
ФС 1000-7,5-БК У1	1000	7,5	0,0450,205	400	16325
ФС 2200-5,6-БК У1	2185	5,6	1218	1000	31230
ФС 2200-3,2-БК У1	2200	3,5	13,515	800	19800
ФС 2600-1,0-Б У1	2600	1,0	0,0330,13	700	14820

43 Блок фильтра сепаратора

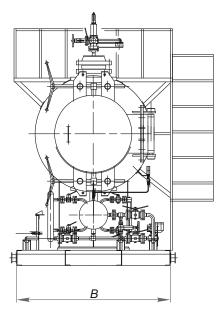


Таблица штуцеров

Обоз.	Назначение						
Α	Вход (выход) газа						
Б	Выход (вход) газа						
В	Люк						
Г	Слив конденсата						
Д	Дренаж						

Обозначение	L,	н,	n,	υ,	Α,	В,	ду штуцеров, мм				
Обозначение	MM	MM	MM	MM	MM	MM	Α	Б	В	L	Д
ФС 1800-8,5-Б	73000	4140	2690	1800	6000	3010	600	600	1400	50	50
ФС 1000-16,0-БК ХЛ1				1000			100	100			
ФС 1400-10,0-Б У1	4868	3505	2080	1400	2260	1270	400	400	500	50	50
ФС 1000-7,5-БК У1	7460	3710	2300	1000	5000	2450	400	400	1000	50	50
ФС 2200-5,6-БК У1	10410	4935	2754	2185	4900	2056	1000	1000	600	50	50
ФС 2200-3,2-БК У1	9000	4529	2744	2200	4900	2056	800	800	600	50	50
ФС 2600-1,0-Б У1	8680	5685	2970	2600	7695	2890	700	700	600	50	80

Нефтегазовые сепараторы (буллиты)

НАЗНАЧЕНИЕ

Отделение механических примесей и капельной жидкости от газа на входе в КС, а также демпфирование пульсации и перепадов давления. При залповых забросах жидкости выполняют роль буферной емкости.

КОНСТРУКЦИЯ

Сепаратор нефтегазовый представляет собой горизонтальную емкость, установленную на двух седловых опорах с расположенными внутри устройствами — отбойниками, решеткой и каплеуловителем. Для осмотра и ремонта внутренних устройств предусмотрена лестница.

В зависимости от климатического района эксплуатации аппарат оборудуется наружным змеевиком и при необходимости площадками обслуживания.

Нефтегазовый сепаратор устанавливается на открытой площадке и может эксплуатироваться в районах с различными климатическими условиями.

Основной материал корпуса, внутренних устройств и змеевика – углеродистая сталь.

ПРИНЦИПЫ РАБОТЫ

Через штуцер входа «А» газ поступает в сепаратор, где происходит отделение капельной жидкости и механических примесей на внутренних устройствах аппарата. Очищенный газ выходит через штуцер «Б», а собравшаяся в нижней части жидкость сливается через штуцер «З».

НОРМАТИВНАЯ БАЗА

ГОСТ Р 52630-12 «Сосуды и аппараты стальные сварные. Общие технические условия».

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

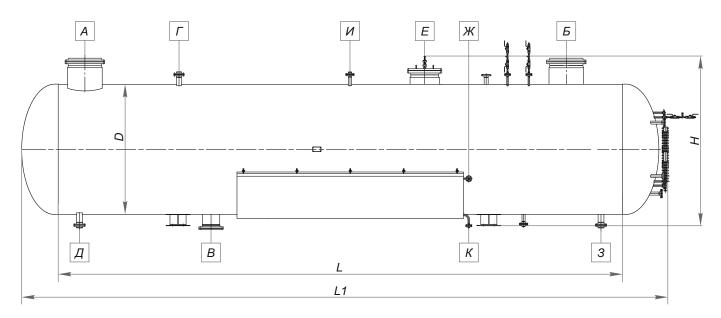
НГС-6,3/80-1,6-ХЛ1

где:

НГ - нефтегазовый;С - сепаратор;

6,3 - производительность, x10⁶, м³/сутки;

80 - объем, м³;


1,6 - расчетное давление, МПа;

ХЛ1 - климатическое исполнение по ГОСТ15150.

Условное обозначение	Объем, м ³	Производительность, x10 ⁶ , м ³ /сутки	Давление расчетное Р _Р , МПа	Климатическое исполнение по ГОСТ15150	Масса, кг
НГС-0,535/12,5-1,6-УХЛ1	12,5	0,535	1,6	УХЛ1	4000
НГС-5,575/25-8,0-У1	25	5,575	8,0	У1	31000
НГС-3,0/50-1,6-УХЛ1	50	3,0	1,6	УХЛ1	16600
НГС-3,0/50-2,5-УХЛ1	50	3,0	2,5	УХЛ1	21900
НГС-2,21/50-3,0-УХЛ1	50	2,21	3,0	УХЛ1	24000
НГС-6,3/80-1,6-ХЛ1	80	6,3	1,6	ХЛ1	27970
НГС-4,5/100-1,0-УХЛ1	100	4,5	1,0	УХЛ1	18500
НГС-4,5/100-1,6-У1	100	4,53,0	1,6	У1	28355

45 Нефтегазовые сепараторы (буллиты)

Таблица штуцеров						
Обоз.	Назначение					
Α	Вход продукта					
Б	Выход продукта					
В	Для очистки					
	Для					
Γ	предохранительного					
	клапана					
Д	Для дренажа					
E	Люк-лаз					
ж	Подвод					
//\	теплоносителя					
3	Слив жидкости					
И	На факел					
К	Отвод теплоносителя					

Условное обозначение	D,	H,	L,	L1,	Ду штуцеров, мм		
условное ооозначение	MM	MM	MM	MM	Α	Б	
НГС-0,535/12,5-1,6-УХЛ1	1600	-	6800	8100	300	300	
НГС-5,575/25-8,0-У1	2000	-	8500	11100	400	400	
НГС-3,0/50-1,6-УХЛ1	2400	3175	11000	12540	600	600	
НГС-3,0/50-2,5-УХЛ1	2400	3175	11000	12590	600	600	
НГС-2,21/50-3,0-УХЛ1	2400	3185	11000	13300	700	700	
НГС-6,3/80-1,6-ХЛ1	3000	3700	10000	13250	1000	1000	
НГС-4,5/100-1,0-УХЛ1	3000	3785	13000	15150	1000	1000	
HFC-4.5/100-1.6-V1	3000	4050	12900	15155	1000	1000	

Сертификаты и разрешения

Сертификаты соответствия:

- Сертификат соответствия системы менеджмента качества стандарту ISO 9001:2008;
- Сертификат соответствия системы менеджмента охраны труда и промышленной безопасности стандарту OHSAS 18001-2007:
- Сертификат соответствия системы менеджмента охраны окружающей среды стандарту ISO 14001-2004.
- Сертификаты соответствия требованиям технических регламентов Таможенного союза (ТР ТС 010/2011, ТР ТС 012/2011, ТР ТС 032/2013) на партию продукции (под контракт на поставку):
 - комплект оборудования установки осушки газа;
 - оборудование установки комплексной подготовки газа;
 - блоки адсорберов;
 - теплообменники.
- Сертификаты соответствия требованиям системы сертификации УкрСЕПРО, технических регламентов Украины:
 - контактный АВО;
 - резервуар.
- Сертификаты соответствия требованиям стандартов ASME:
 - сертификат одобрения производства.

Разрешения на применение:

- разрешение на право изготовления и применения в Республике Беларусь технических устройств на объектах, поднадзорных Госпромнадзору.

